Towards Linked Data Conventions for Delivery of Environmental Data Using netCDF

  • Jonathan Yu
  • Nicholas J. Car
  • Adam Leadbetter
  • Bruce A. Simons
  • Simon J. D. Cox
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 448)


netCDF is a well-known and widely used format to exchange array-oriented scientific data such as grids and time-series. We describe a new convention for encoding netCDF based on Linked Data principles called netCDF-LD. netCDF-LD allows metadata elements, given as string values in current netCDF files, to be given as Linked Data objects. netCDF-LD allows precise semantics to be used for elements and expands the type options beyond lists of controlled terms. Using Uniform Resource Identifiers (URIs) for elements allows them to refer to other Linked Data resources for their type and descriptions. This enables improved data discovery through a generic mechanism for element type identification and adds element type expandability to new Linked Data resources as they become available. By following patterns already established for extending existing formats, netCDF-LD applications can take advantage of existing software for processing Linked Data and supporting more effective data discovery and integration across systems.


netCDF linked data data discovery environmental data 


  1. 1.
    Eaton, B., Gregory, J., Drach, B., Taylor, K., Hankin, S.: NetCDF Climate and Forecast (CF) Metadata Conventions (2011)Google Scholar
  2. 2.
    Cox, S.J.D., Simons, B.A., Yu, J.: A harmonized vocabulary for water quality. In: 11th International Conference on Hydroinformatics (HIC), IWA Publishing, New York (2014)Google Scholar
  3. 3.
    Cox, S., Yu, J., Rankine, T.: SISSVoc: A Linked Data API for access to SKOS vocabularies. Semant. Web (2014)Google Scholar
  4. 4.
    Caracciolo, C., Stellato, A., Morshed, A.: The agrovoc linked dataset. Semanit. Web (2013)Google Scholar
  5. 5.
    Leadbetter, A., Lowry, R.K., Clements, O.: The NERC Vocabulary Server: Version 2.0. EGU General Assembly, pp. 29–43. Copernicus, Vienna, Austria (2012) Google Scholar
  6. 6.
    Summers, E., Isaac, A., Redding, C., Krech, D.: LCSH, SKOS and Linked Data. CoRR. abs/0805.2 (2008) Google Scholar
  7. 7.
    Peckham, S.D.: The CSDMS Standard Names: Cross-Domain Naming Conventions for Describing Process Models, Data Sets and Their Associated Variables. In: Ames, D.P., Quinn, N.W.T., Rizzol, A.E. (eds.) International Environmental Modelling and Software Society (iEMSs), San Diego, California, USA (2014)Google Scholar
  8. 8.
    Berners-Lee, T.: Linked Data - Design IssuesGoogle Scholar
  9. 9.
    Crockford, D.: The application/json Media Type for JavaScript Object Notation (JSON) (2006) Google Scholar
  10. 10.
    Herman, I., Archer, P.: CSV on the Web Working Group Charter (2013),
  11. 11.
  12. 12.
    Sporny, M., Kellogg, G., Lanthaler, M.: JSON-LD 1.0 -A JSON-based Serialization for Linked Data,
  13. 13.
    Palmer, D.: WaterML 2.0 – Timeseries – NetCDF Discussion Paper (2012)Google Scholar
  14. 14.
    Bigagli, L., Nativi, S.: NetCDF Uncertainty Conventions (NetCDF-U) 1.0 (2011)Google Scholar
  15. 15.
    Yu, J., Simons, B.A., Car, N., Cox, S.J.D.: Enhancing water quality data service discovery and access using standard vocabularies. In: 11th International Conference on Hydroinformatics (HIC). IWA Publishing, New York (2014)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Jonathan Yu
    • 1
  • Nicholas J. Car
    • 1
  • Adam Leadbetter
    • 2
  • Bruce A. Simons
    • 1
  • Simon J. D. Cox
    • 1
  1. 1.Land and Water Flagship: CSIRO, Highett and Dutton Park LabsAustralia
  2. 2.British Oceanographic Data CentreLiverpoolUnited Kingdom

Personalised recommendations