Advertisement

Three Levels of R Language Involvement in Global Monitoring Plan Warehouse Architecture

  • Jiří Kalina
  • Richard Hůlek
  • Jana Borůvkova
  • Jiří Jarkovský
  • Jana Klánová
  • Ladislav Dušek
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 448)

Abstract

Three different options for involving R statistical software in the infrastructure of the data warehouse and visualization tool of the Global Monitoring Plan for persistent organic pollutants are presented, all differing in their demands with respect to data transfer rates, numbers of concurrently connected users, total amounts of data transferred, and the possibilities of repeating statistical calculations within a short period. After the development stage, two of these options were used at different levels of the system, demonstrating the specificity of their use and enabling the deployment of the powerful features of R statistical software by a system created using conventional programming languages.

Keywords

JSON JSONIO jsonlite ODBC statistical computing web application system architecture POPs GMP 

References

  1. 1.
    Hůlek, R., Jarkovský, J., Borůvková, J., Kalina, J., Gregor, J., Šebková, K., Schwarz, D., Klánová, J., Dušek, L.: Global Monitoring Plan of the Stockholm Convention on Persistent Organic Pollutants: visualization and on-line analysis of data from the monitoring reports (2013)Google Scholar
  2. 2.
    Jarkovský, J., Dušek, L., Klánová, J., Hůlek, R., Šebková, K., Borůvková, J., Kalina, J., Gregor, J., Bednářová, Z., Novák, R., Šalko, M., Hřebíček, J., Holoubek, I.: Multi-matrix online data browser for environmental analysis and assessment. Masaryk University, Version 1.0 (2014), www.genasis.cz (Version 3.10. March 2014)
  3. 3.
    Hůlek, R., Kalina, J., Dušek, L., Jarkovský, J.: Integration of R Statistical Environment into ICT Infrastructure of GMP and GENASIS. In: Hřebíček, J., Schimak, G., Kubásek, M., Rizzoli, A.E. (eds.) ISESS 2013. IFIP Advances in Information and Communication Technology, vol. 413, pp. 240–252. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    The R Project for Statistical Computing (2014), http://www.r-project.org/
  5. 5.
    Kalina, J., Klánová, J., Dušek, L., Harner, T., Borůvková, J., Jarkovský, J.: genasis: Global ENvironmental ASsessment Information System (GENASIS) computational tools. R packageversion 1.0 (2014), http://CRAN.R-project.org/package=genasis
  6. 6.
    Van den Berg, M., Birnbaum, L.S., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D.: Tohyama, Ch., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N., Peterson, R.E.: The, World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds. Toxicological Sciences 93(2),223-241 (2005), doi: 10.1093/toxsci/kfl055Google Scholar
  7. 7.
    Ripley, B., Lapsley, M.: RODBC: ODBC Database Access. R packageversion 1.3-9 (2013), http://CRAN.R-project.org/package=RODBC
  8. 8.
    Ooms, J., Duncan, T.L., Hilaiel, L.: jsonlite: A Robust, High Performance JSON Parser and Generator for R. R package version 0.9.13, http://cran.r-project.org/web/packages/jsonlite/index.html

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Jiří Kalina
    • 1
    • 2
  • Richard Hůlek
    • 1
  • Jana Borůvkova
    • 2
  • Jiří Jarkovský
    • 1
  • Jana Klánová
    • 2
  • Ladislav Dušek
    • 1
  1. 1.Institute of Biostatistics and AnalysesBrnoCzech Republic
  2. 2.Research Centre for Toxic Compounds in the EnvironmentBrnoCzech Republic

Personalised recommendations