Advertisement

A Provenance Maturity Model

  • Kerry Taylor
  • Robert Woodcock
  • Susan Cuddy
  • Peter Thew
  • David Lemon
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 448)

Abstract

The history of a piece of information is known as “provenance”. From extensive interactions with hydro-and geo-scientists in Australian science agencies we found both widespread demand for provenance and widespread confusion about how to manage it and how to develop requirements for managing it.

We take inspiration from the well-known software development Capability Maturity Model to design a Maturity Model for provenance management that we call the PMM. The PMM can be used to assess the state of existing practices within an organisation or project, to benchmark practices and existing tools, to develop requirements for new provenance projects, and to track improvements in provenance management across an organisational unit.

We present the PMM and evaluate it through application in a workshop of scientists across three data-intensive science projects. We find that scientists recognise the value of a structured approach to requirements elicitation that ensures that aspects are not overlooked.

Keywords

provenance reproducibility lineage pedigree requirements 

References

  1. 1.
    Ackland, R., Taylor, K., Lefort, L., Cameron, M.A., Rahman, J.: Semantic Service Integration for Water Resource Management. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 816–828. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Adams, N., Haller, A., Krumpholz, A., Taylor, K.: A semantic lab notebook—report on a use case modelling an experiment of a microwave-based quarantine method. In: Linked Science (LISC 2013), vol. 1116, CEUR proceedings (October 2013)Google Scholar
  3. 3.
    Compton, M., Corsar, D., Taylor, K.: Sensor data provenance: SSNO and PROV-O together at last. To appear 7th International Semantic Sensor Networks Workshop (October 2014)Google Scholar
  4. 4.
    De Roure, D.: Towards computational research objects. In: Proceedings of the 1st International Workshop on Digital Preservation of Research Methods and Artefacts, DPRMA 2013, pp. 16–19. ACM, New York (2013)CrossRefGoogle Scholar
  5. 5.
    Di Stefano, M., Fox, P., Beaulieu, S., Maffei, A., West, P., Hare, J.: Enabling the integrated assessment of large marine ecosystems: Informatics to the forefront of science-based decision support. In: AGU Fall Meeting, number Poster IN51A-1689, San Fancsisco, American GeoPhysical Union (December 2012)Google Scholar
  6. 6.
    ISO 19115-2:2009 geographic information - metadata - part 2: Extensions for imagery and gridded data. ISO19115-2 Standard (2009)Google Scholar
  7. 7.
    Lebo, T., Sahoo, S., McGuinness, D., Belhajjame, K., Cheney, J., Corsar, D., Garijo, D., Soiland-Reyes, S., Zednik, S., Zhao, J.: PROV-O: The PROV ontology. W3C Recommendation (2013), http://www.w3.org/TR/prov-o/ (accessed April 23, 2014)
  8. 8.
    Liu, Q., Zhao, X., Taylor, K., Lin, X., Squire, G., Kloppers, C., Miller, R.: Towards semantic comparison of multi-granularity process traces. Knowledge-Based Systems 52, 91–106 (2013)CrossRefGoogle Scholar
  9. 9.
    Lopez, F.J., Barrera, J.: Linked map VGI provenance schema. Deliverable D1.6.1, Planet Data Network of Excellence (March 2014)Google Scholar
  10. 10.
    Ma, X., Fox, P., Tilmes, C., Jacobs, K., Waple, A.: Capturing provenance of global change information. Nature Climate Change 4(6), 409–413 (2014)CrossRefGoogle Scholar
  11. 11.
    Page, K., Palma, R., Hołubowicz, P., Klyne, G., Soiland-Reyes, S., Cruickshank, D., Cabero, R.G., Cuesta, E.G., Roure, D.D., Zhao, J., Gómez-Pérez, J.M.: From workflows to research objects: An architecture for preserving the semantics of science. In: 2nd International Workshop on Linked Science 2012: Tackling Big Data (LISC2012), Boston, USA, vol. 951. CEUR Proceedings (November 2012)Google Scholar
  12. 12.
    Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V.: Capability maturity model, version 1.1. IEEE Software 10(4), 18–27 (1993)CrossRefGoogle Scholar
  13. 13.
    Power, R., Wise, C., Robinson, B., Squire, G.: Harmonising web feeds for emergency management. In: Piantadosi, J., Anderssen, R.S., Boland, J. (eds.) MODSIM 2013, 20th International Congress on Modelling and Simulation, pp. 2194–2200. Modelling and Simulation Society of Australia and New Zealand (December 2013)Google Scholar
  14. 14.
    Shu, Y., Taylor, K.: ISO 19115 lineage ontology (January 2013) (accessed November 2013)Google Scholar
  15. 15.
    Shu, Y., Taylor, K., Hapuarachchi, P., Peters, C.: Modelling provenance in hydrologic science: A case study on streamflow forecasting. Journal of Hydroinformatics (2012)Google Scholar
  16. 16.
    Taylor, K., Austin, T., Cameron, M.: Charging for information services in service-oriented architectures. In: Proceedings, International Workshop on Business Services Networks (BSN 2005), Workshop of IEEE International Conference on e-Technology,e-Commerce and e-Service, Kong Kong, pp. 112–119 (March 2005)Google Scholar
  17. 17.
    Woodcock, R., Simons, B., Duclaux, G., Cox, S.: AuScope’s use of standards to deliver earth resource data. In: Geophysical Research Abstracts, volume 12:EGU2010-1556. European GeoPhysical Union General Assembly (2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Kerry Taylor
    • 1
    • 2
  • Robert Woodcock
    • 3
  • Susan Cuddy
    • 4
  • Peter Thew
    • 1
  • David Lemon
    • 4
  1. 1.CSIRO Digital ProductivityCanberraAustralia
  2. 2.Australian National UniversityCanberraAustralia
  3. 3.CSIRO Mineral ResourcesCanberraAustralia
  4. 4.CSIRO Land and WaterCanberraAustralia

Personalised recommendations