The Pinpoint System

  • Jana L. Lewis
  • Danny A. SherwinterEmail author


The Pinpoint system, an endoscopic real-time fluorescence imaging system, incorporates both a high definition (HD) white light and near infra-red (NIR) fluorescence excitation and acquisition systems into a single camera head. The standard white light view and NIR are thus retained throughout the procedure enabling the surgeon to operate with real-time fluorescence guidance. Our group has concentrated on the use of Pinpoint in the assessment of colorectal perfusion and intraoperative cholangiography. In addition, we describe our early experience using Pinpoint for sentinel lymph node dissection in colorectal and gastric malignancies and discuss future applications of this technology.


Pinpoint system Endoscopic real-time fluorescence imaging system NIR fluorescence excitation and acquisition system High definition (HD) Fluorescence guidance Colorectal perfusion Intraoperative cholangiography Lymph node dissection 

Supplementary material

Video 8.1

Assessment of colonic perfusion prior to anastomotic creation during a right hemi-colectomy (MP4 68,206 kb)

Video 8.2

Abnormal transanal assessment of colorectal anastomosis following a low anterior resection of the rectum (MP4 60,700 kb)

Video 8.3

ICG (indocyanine green) cholangiography in a patient undergoing a laparoscopic cholecystectomy with a short cystic duct (MP4 202,168 kb)

Video 8.4

ICG (indocyanine green) cholangiography in a patient undergoing a laparoscopic cholecystectomy with a cystic duct stone (MP4 129,243 kb)

Video 8.5

The use of the Pinpoint for lymph node mapping after endoscopic submucosal ICG (indocyanine green) administration in a patient undergoing a laparoscopic distal gastrectomy for gastric cancer (MP4 158,937 kb)


  1. 1.
    Liu DZ, Mathes DW, Zenn MR, Neligan PC. The application of indocyanine green fluorescence angiography in plastic surgery. J Reconstr Microsurg. 2011;27(6):355–64.CrossRefPubMedGoogle Scholar
  2. 2.
    Mitsuhashi N, Kimura F, Shimizu H, Imamaki M, Yoshidome H, Ohtsuka M, et al. Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery. J Hepatobiliary Pancreat Surg. 2008;15:508–14.CrossRefPubMedGoogle Scholar
  3. 3.
    Tagaya N, Shimoda M, Kato M, Nakagawa A, Abe A, Iwasaki Y, Oishi H, Shirotani N, Kubota KJ. Intraoperative exploration of biliary anatomy using fluorescence imaging of indocyanine green in experimental and clinical cholecystectomies. J Hepatobiliary Pancreat Sci. 2010;17(5):595–600.CrossRefPubMedGoogle Scholar
  4. 4.
    Stiles BM, Adusumilli PS, Bhargava A, Fong Y. Fluorescence cholangiography in a mouse model; an innovative method for improved laparoscopic identification of the biliary anatomy. Surg Endosc. 2006;20:1291–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Vignali A, Fazio VW, Lavery IC, Milsom JW, Church JM, Hull TL, Strong SA, Oakley JR. Factors associated with the occurrence of leaks in stapled rectal anastomoses: a review of 1,014 patients. J Am Coll Surg. 1997;185(2):105–13.CrossRefPubMedGoogle Scholar
  6. 6.
    Vignali A, Gianotti L, Braga M, et al. Altered microperfusion at the rectal stump is predictive for rectal anastomotic leak. Dis Colon Rectum. 2000;43:76–82.CrossRefPubMedGoogle Scholar
  7. 7.
    Novell JR, Lewis AA. Peroperative observation of marginal artery bleeding: a predictor of anastomotic leakage. Br J Surg. 1990;77(2):137–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Matthiessen P, Hallböök O, Andersson M, Rutegård J, Sjödahl R. Risk factors for anastomotic leakage after anterior resection of the rectum. Colorectal Dis. 2004;6(6):462–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Kudszus S, Roesel C, Schachtrupp A, Höer JJ. Intraoperative laser fluorescence angiography in colorectal surgery: a noninvasive analysis to reduce the rate of anastomotic leakage. Langenbecks Arch Surg. 2010;395(8):1025–30.CrossRefPubMedGoogle Scholar
  10. 10.
    Choi HK, Law WL, Ho JW. Leakage after resection and intraperitoneal anastomosis for colorectal malignancy: analysis of risk factors. Dis Colon Rectum. 2006;49(11):1719–25.CrossRefPubMedGoogle Scholar
  11. 11.
    Urbanavičius L, Pattyn P, Van de Putte D, Venskutonis D How to assess intestinal viability during surgery: a review of techniques. World J Gastrointest Surg. 2011;3(5):59–69.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Ahn H, Lindhagen J, Nilsson GE, Salerud EG, Jodal M, Lundgren O. Evaluation of laser Doppler flowmetry in the assessment of intestinal blood flow in cat. Gastroenterology. 1985;88:951–7.PubMedGoogle Scholar
  13. 13.
    Gore RW, Bohlen HG. Microvascular pressures in rat intestinal muscle and mucosal villi. Am J Physiol. 1977;80:H685–93.Google Scholar
  14. 14.
    Brolin RE, Bibbo C, Petschenik A, Reddell MT, Semmlow JL. Comparison of ischemic and reperfusion injury in canine bowel viability assessment. J Gastrointest Surg. 1997;1:511–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Sherwinter DA. Transanal near-infrared imaging of colorectal anastomotic perfusion. Surg Laparosc Endosc Percutan Tech. 2012;22(5):433–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Sherwinter DA. A novel adaptor converts a laparoscope into a high-definition rigid sigmoidoscope. Surg Innov. 2013;20(4):411–3.CrossRefPubMedGoogle Scholar
  17. 17.
    Sherwinter DA, Gallagher J, Donkar T. Intra-operative transanal near infrared imaging of colorectal anastomotic perfusion: a feasibility study. Colorectal Dis. 2013;15(1):91–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Buddingh KT, Morks AN, Ten Cate Hoedemaker HO, Blaauw CB, van Dam GM, Ploeg RJ, Hofker HS, Nieuwenhuijs VB. Documenting correct assessment of biliary anatomy during laparoscopic cholecystectomy. Surg Endosc. 2012;26(1):79–85.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Flum DR, Dellinger EP, Cheadle A, Chan L, Koepsell T. Intraoperative cholangiography and risk of common bile duct injury during cholecystectomy. JAMA. 2003;289(13):1639–44.CrossRefPubMedGoogle Scholar
  20. 20.
    Buddingh KT, Nieuwenhuijs VB, van Buuren L, Hulscher JB, de Jong JS, van Dam GM. Intraoperative assessment of biliary anatomy for prevention of bile duct injury: a review of current and future patient safety interventions. Surg Endosc. 2011;25(8):2449–61.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Sherwinter DA. Identification of anomolous biliary anatomy using near-infrared cholangiography. J Gastrointest Surg. 2012;16(9):1814–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Corbitt Jr JD, Leonetti LA. One thousand and six consecutive laparoscopic intraoperative cholangiograms. JSLS. 1997;1(1):13–6.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Puente SG, Bannura GC. Radiological anatomy of the biliary tract: variations and congenital abnormalities. World J Surg. 1983;7(2):271–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Tantia O, Jain M, Khanna S, Sen B. Post cholecystectomy syndrome: role of cystic duct stump and re-intervention by laparoscopic surgery. J Minim Access Surg. 2008;4:71–5.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Flörcken H. Gallenblasenregeneration mit Steinrecidiv nach Cholecystectomie. Deutsch Z Chir. 1912;113:604.CrossRefGoogle Scholar
  26. 26.
    Ponsky JL, Dumot J. Retained gallbladder/cystic duct remnant calculi as a cause of postcholecystectomy pain. Surg Endosc. 2002;16:981–4.CrossRefPubMedGoogle Scholar
  27. 27.
    de Santibañes E, Palavecino M, Ardiles V, et al. Bile duct injuries: management of late complications. Surg Endosc. 2006;20:1648–53.CrossRefPubMedGoogle Scholar
  28. 28.
    Fischer JE. Is damage to the common bile duct during laparoscopic cholecystectomy an inherent risk of the operation? Am J Surg. 2009;197:829–32.CrossRefPubMedGoogle Scholar
  29. 29.
    Fiore NF, Ledniczky G, Wiebke EA, et al. An analysis of perioperative cholangiography in one thousand laparoscopic cholecystectomies. Surgery. 1997;122:817–23.CrossRefPubMedGoogle Scholar
  30. 30.
    Shea JA, Healey MJ, Berlin JA, et al. Mortality and complications associated with laparoscopic cholecystectomy: a meta-analysis. Ann Surg. 1996;224:609–20.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Fletcher DR, Hobbs MST, Tan P, et al. Complications of cholecystectomy: risks of the laparoscopic approach and protective effects of operative cholangiography. A population-based study. Ann Surg. 1999;229:449–57.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Vecchio R, MacFadyen BV, Latteri S. Laparoscopic cholecystectomy: an analysis of 114,005 cases of United States series. Int Surg. 1998;83:215–9.PubMedGoogle Scholar
  33. 33.
    Russell JC, Walsh SJ, Mattie AS, et al. Bile duct injuries, 1989-1993: a statewide experience. Arch Surg. 1996;131:383–8.CrossRefGoogle Scholar
  34. 34.
    de Haas RJ, Wicherts DA, Hobbelink MG, van Diest PJ, Vleggaar FP, Borel Rinkes IH, van Hillegersberg R. Sentinel lymph node mapping in colon cancer using radiocolloid as a single tracer: a feasibility study. Nucl Med Commun. 2012;33(8):832–7.CrossRefPubMedGoogle Scholar
  35. 35.
    McCulloch P, Nita ME, Kazi H, Gama-Rodrigues J. Extended versus limited lymph nodes dissection technique for adenocarcinoma of the stomach. Cochrane Database Syst Rev 2004;(4):CD001964.Google Scholar
  36. 36.
    Ogawa M, Regino CA, Seidel J, Green MV, Xi W, Williams M, Kosaka N, Choyke PL, Kobayashi H. Dual-modality molecular imaging using antibodies labeled with activatable fluorescence and a radionuclide for specific and quantitative targeted cancer detection. Bioconjug Chem. 2009;20(11):2177–84.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Bunschoten A, Buckle T, Kuil J, Luker GD, Luker KE, Nieweg OE, van Leeuwen FW. Targeted non-covalent self-assembled nanoparticles based on human serum albumin. Biomaterials. 2012;33(3):867–75.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of SurgeryMaimonides Medical CenterBrooklynUSA

Personalised recommendations