What is Common for Dihydrogen Bond and H…σ Interaction—Theoretical Analysis and Experimental Evidences

  • Sławomir J. GrabowskiEmail author
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 19)


Two types of the hydrogen bond are described and compared here; the A–H…H–B dihydrogen bond and the A–H…σ interaction. In a case of the dihydrogen bond the H…H contact between the hydrogen atoms characterized by the opposite charges is observed; i.e. between the protonic (A)H and hydridic (B)H hydrogens. For the A–H…σ hydrogen bond the A–H proton donating bond interacts with the σ-electrons of the molecular hydrogen. These interactions are topologically different since for DHB the bond path linking the attractors of H-atoms with the corresponding bond critical point is observed. For the A–H…σ interaction the bond path between the (A)H-atom attractor and the bond critical point of the H–H bond of the molecular hydrogen is observed. Both types of the hydrogen bond are characterized by the significant σ → σ* orbital-orbital interaction, σBH → σAH* in a case of DHB and σHH → σAH* for A–H…σ. There are also evidences that A–H…H–B and A–H…σ may be classified as the hydrogen bonds. The examples of complexes characterized by the mentioned above types of the hydrogen bond are analyzed in this chapter, the theoretical as well as experimental examples are presented.


Hydrogen bond Dihydrogen bond A–H…σ interaction Quantum theory of atoms in molecules (QTAIM) Natural bond orbitals (NBO) method Bond path Bond critical point Decomposition of the energy of interaction 



Financial support comes from Eusko Jaurlaritza (GIC IT-588-13) and the Spanish Office for Scientific Research (CTQ 2012-38496-C05-04). Technical and human support provided by Informatikako Zerbitzu Orokora—Servicio General de Informatica de la Universidad del Pais Vasco (SGI/IZO-SGIker UPV/EHU), Ministerio de Ciencia e Innovación (MICINN), Gobierno Vasco Eusko Jaurlanitza (GV/EJ), European Social Fund (ESF) is gratefully acknowledged.


  1. 1.
    Richardson TB, de Gala S, Crabtree RH (1995) Unconventional hydrogen bonds: intermolecular B–H…H–N interactions. J Am Chem Soc 117:12875–12876CrossRefGoogle Scholar
  2. 2.
    Negative values represent binding and interaction energies for stable complexes. For the convenience of discussion the absolute positive values are given in the textGoogle Scholar
  3. 3.
    Scheiner S (1994) Ab initio studies of hydrogen bonds: the water dimer paradigm. Annu Rev Phys Chem 45:23–56CrossRefGoogle Scholar
  4. 4.
    Wessel J, Lee JC Jr, Peris E, Yap GPA, Fortin JB, Ricci JS, Sini G, Albinati A, Koetzle TF, Eisenstein O, Rheingold AL, Crabtree RH (1995) An unconventional intermolecular three-center N–H…H2Re hydrogen bond in crystalline [ReH5(PPh3)3]-indole-C6H6. Angew Chem Int Ed Engl 34:2507–2509CrossRefGoogle Scholar
  5. 5.
    Crabtree RH, Siegbahn PEM, Eisenstein O, Rheingold AL, Koetzle TFA (1996) A new intermolecular interaction: unconventional hydrogen bonds with element-hydride bonds as proton acceptor. Acc Chem Res 29:348–354CrossRefGoogle Scholar
  6. 6.
    Crabtree RH, Eisenstein O, Sini G, Peris E (1998) New types of hydrogen bonds. J Organomet Chem 567:7–11CrossRefGoogle Scholar
  7. 7.
    Custelcean R, Jackson JE (2001) Dihydrogen bonding: structures, energetics, and dynamics. Chem Rev 101:1963–1980CrossRefGoogle Scholar
  8. 8.
    Robertson KN, Knop O, Cameron TS (2003) C–H…H–C interactions in organoammonium tetraphenylborates: another look at dihydrogen bonds. Can J Chem 81:727–743CrossRefGoogle Scholar
  9. 9.
    Wolstenholme DJ, Cameron TS (2006) Comparative study of weak interactions in molecular crystals: H–H bonds vs hydrogen bonds. J Phys Chem A 110:8970–8978CrossRefGoogle Scholar
  10. 10.
    Alkorta I, Elguero J, Foces-Foces C (1996) Dihydrogen bonds (A–H…H–B). Chem Commun 1633–1634Google Scholar
  11. 11.
    Remko M (1998) Thermodynamics of dihydrogen bonds (A–H…H–B). Mol Phys 94:839–842Google Scholar
  12. 12.
    Orlova G, Scheiner S (1998) Intermolecular MH…HR bonding in monohydride Mo and W complexes. J Phys Chem A 102:260–269CrossRefGoogle Scholar
  13. 13.
    Orlova G, Scheiner S (1998) Intermolecular H…H bonding and proton transfer in semisandwich Re and Ru complexes. J Phys Chem A 102:4813–4818CrossRefGoogle Scholar
  14. 14.
    Orlova G, Scheiner S, Kar T (1999) Activation and cleavage of H–R bonds through intermolecular H…H bonding upon reaction of proton donors HR with 18-electron transition metal hydrides. J Phys Chem A 103:514–520CrossRefGoogle Scholar
  15. 15.
    Kulkarni SA (1998) Dihydrogen bonding in main group elements: an ab initio study. J Phys Chem A 102:7704–7711CrossRefGoogle Scholar
  16. 16.
    Kulkarni SA, Srivastava AK (1999) Dihydrogen bonding in main group elements: a case study of complexes of LiH, BH3, and AlH3 with third-row hydrides. J Phys Chem A 103:2836–2842CrossRefGoogle Scholar
  17. 17.
    Custelcean R, Jackson JE (1998) Topochemical control of covalent bond formation by dihydrogen bonding. J Am Chem Soc 120:12935–12941CrossRefGoogle Scholar
  18. 18.
    Matus MH, Anderson KD, Camaioni DM, Autrey ST, Dixon DA (2007) Reliable predictions of the thermochemistry of boron-nitrogen hydrogen storage compounds: BxNxHy, x = 2, 3. J Phys Chem A 111:4411–4421CrossRefGoogle Scholar
  19. 19.
    Miranda CR, Ceder G (2007) Ab initio investigation of ammonia-borane complexes for hydrogen storage. J Chem Phys 126:184703CrossRefGoogle Scholar
  20. 20.
    Keaton RJ, Blacquiere JM, Baker RT (2007) Base metal catalyzed dehydrogenation of ammonia–borane for chemical hydrogen storage. J Am Chem Soc 129:1844–1845CrossRefGoogle Scholar
  21. 21.
    Staubitz A, Besora M, Harvey JN, Manners I (2008) Computational analysis of amine-borane adducts as potential hydrogen storage materials with reversible hydrogen uptake. Inorg Chem 47:5910–5918CrossRefGoogle Scholar
  22. 22.
    Custelcean R, Jackson JE (2000) Topochemical dihydrogen to covalent bonding transformation in LiBH4·TEA: a mechanistic study. J Am Chem Soc 122:5251–5257CrossRefGoogle Scholar
  23. 23.
    Custelcean R, Vlassa M, Jackson JE (2000) Toward crystalline covalent solids: crystal-to-crystal dihydrogen to covalent bonding transformation in NaBH4 · THEC. Angew Chem Int Ed Engl 39:3299–3302Google Scholar
  24. 24.
    Kenward AL, Piers WE (2008) Heterolytic H2 activation by nonmetals. Angew Chem Int Ed Engl 47:38–41CrossRefGoogle Scholar
  25. 25.
    Filippov OA, Filin AM, Tsupreva VN, Belkova NV, Lledós A, Ujaque G, Epstein LM, Shubina ES (2006) Proton-transfer and H2-elimination reactions of main-group hydrides EH4—(E = B, Al, Ga) with alcohols. Inorg Chem 45:3086–3096.Google Scholar
  26. 26.
    Kubas GJ (2001) Metal Dihydrogen and σ-bond complexes—structure, theory, and reactivity. Kluwer Academic/Plenum Publishers: New YorkGoogle Scholar
  27. 27.
    Crabtree RH (2005) The organometallic chemistry of the transition metals. Wiley, HobokenCrossRefGoogle Scholar
  28. 28.
    Alcaraz G, Grellier M, Sabo-Etienne S (2009) Bis σ-bond dihydrogen and borane ruthenium complexes: bonding nature, catalytic applications, and reversible hydrogen release. Acc Chem Res 42:1640–1649CrossRefGoogle Scholar
  29. 29.
    Epstein LM, Shubina ES (2002) New types of hydrogen bonding in organometallic chemistry. Coord Chem Rev 231:165–181CrossRefGoogle Scholar
  30. 30.
    Belkova NV, Shubina ES, Epstein LM (2005) Diverse world of unconventional hydrogen bonds. Acc Chem Res 38:624–631CrossRefGoogle Scholar
  31. 31.
    de Oliveira BG (2013) Structure, energy, vibrational spectrum, and Bader’s analysis of π…H hydrogen bonds and H−δ…H dihydrogen bonds. Phys Chem Chem Phys 15:37–79CrossRefGoogle Scholar
  32. 32.
    Grabowski SJ (2013) Dihydrogen bond and X–H…σ interaction as sub-classes of hydrogen bond. J Phys Org Chem 26:452–459CrossRefGoogle Scholar
  33. 33.
    Epstein LM, Belkova NV, Shubina ES (2001) Dihydrogen bonded complexes and proton transfer to hydride ligands by spectral (IR, NMR) studies. In: Peruzzini M, Poli R (eds) Recent advances in hydride chemistry (Chapter). Elsevier, Amsterdam pp 391–418Google Scholar
  34. 34.
    Grabowski SJ, Leszczynski J (2005) Is a dihydrogen bond a unique phenomenon? Chapter in vol 9, a book series: computational chemistry: reviews of current trends. World Scientific Publishing Co: Singapore, pp 195–235Google Scholar
  35. 35.
    Grabowski SJ, Leszczynski J (2009) Dihydrogen bonds: novel feature of hydrogen bond interactions. In: Leszczynski J, Shukla M (eds) Practical aspects of computational chemistry, methods, concepts and applications (Chapter). Springer: Heidelberg Dordrecht, London, New YorkGoogle Scholar
  36. 36.
    Bakhmutov VI (2008) Dihydrogen bonds, principles, experiments, and applications. John Wiley & Sons, Inc.: Hoboken, New JerseyGoogle Scholar
  37. 37.
    Klooster WT, Koetzle TF, Siegbahn PEM, Richardson TB, Crabtree RH (1999) Study of the N–H…H–B Dihydrogen bond including the crystal structure of bh3nh3 by neutron diffraction. J Am Chem Soc 121:6337–6343CrossRefGoogle Scholar
  38. 38.
    Zachariasen WH, Mooney RCL (1934) The structure of hypophosphite group as determined from the crystal lattice of ammonium hypophosphite. J Chem Phys 2:34–37CrossRefGoogle Scholar
  39. 39.
    Burg AB (1964) Enhancement of P–H bonding in a phosphine monoborane. Inorg Chem 3:1325–1327CrossRefGoogle Scholar
  40. 40.
    Titov LV, Makarova MD, Rosolovskii VY (1968) Guanidinium borohydride. Dokl Akad Nauk 180:381–382Google Scholar
  41. 41.
    Grabowski SJ, Krygowski TM (1999) The proton transfer path for C=O…H–O systems modelled from crystal structure data. Chem Phys Lett 305:247–250CrossRefGoogle Scholar
  42. 42.
    Sobczyk L, Grabowski SJ, Krygowski TM (2005) Interrelation between H-bond and Pi-electron delocalization. Chem Rev 105:3513–3560CrossRefGoogle Scholar
  43. 43.
    Grabowski SJ (2014) Tetrel bond—σ-hole bond as a preliminary stage of the SN reaction. Phys Chem Chem Phys 16:1824–1834CrossRefGoogle Scholar
  44. 44.
    Brown MP, Heseltine RW (1968) Co-ordinated BH3, as a proton acceptor group in hydrogen bonding. Chem Commun 23:1551–1552Google Scholar
  45. 45.
    Brown MP, Heseltine RW, Smith PA, Walker PJ (1970) An infrared study of coordinated BH3 and BH2 groups as proton acceptors in hydrogen bonding. J Chem Soc A 410–414Google Scholar
  46. 46.
    Stevens RC, Bau R, Milstein D, Blum O, Koetzle TF (1990) Concept of the H(δ+)…H(δ−) interaction. A low-temperature neutron diffraction study of cis- [IrH (OH)(PMe3)4] PF6. J Chem Soc Dalton Trans 1429–1432Google Scholar
  47. 47.
    Milstein D, Calabrese JC, Williams ID (1986) Formation, structures, and reactivity of cis-hydroxy-, cis-methoxy-, and cis-mercaptoiridium hydrides. Oxidative addition of water to Ir(I). J Am Chem Soc 108:6387–6389CrossRefGoogle Scholar
  48. 48.
    Lough AJ, Park S, Ramachandran R, Morris RH (1994) Switching on and off a new intramolecular hydrogen-hydrogen interaction and the heterolytic splitting of dihydrogen. Crystal and molecular structure of [Ir({H(ηl-SC5H4NH) }2(PCy3) 2]BF4.2.7CH2C12. J Am Chem Soc 116:8356–8357Google Scholar
  49. 49.
    Gusev DG, Lough AJ, Morris RH (1998) New polyhydride anions and proton-hydride hydrogen bonding in their ion pairs. J Am Chem Soc 120:13138–13147CrossRefGoogle Scholar
  50. 50.
    Ramachandran R, Morris RH (1994) A new type of intramolecular H…H…H interaction involving N–H…H(Ir)…H–N atoms. Crystal and molecular structure of [IrH(ηl-SC5H4NH) 22-SC5H4N) (PCy3)]BF4.0.72CH2C12. J Chem Soc Chem Commun 2201–2202Google Scholar
  51. 51.
    Lee JC, Pens E, Rheingold AL, Crabtree RH (1994) An unusual type of H…H interaction: Ir–H…H–O and Ir–H…H–N hydrogen bonding and its involvement in σ-bond metathesis. J Am Chem Soc 116:11014–11019CrossRefGoogle Scholar
  52. 52.
    Lee JC, Rheingold AL, Muller B, Pregosin PS, Crabtree RH (1994) Complexation of an amide to iridium via an iminol tautomer and evidence Ir–H…H–O hydrogen bond. J Chem Soc Chem Commun 1021–1022Google Scholar
  53. 53.
    Belkova NV, Shubina ES, Gutsul EI, Epstein LM, Eremenko IL, Nefedov SE (2000) Structural and energetic aspects of hydrogen bonding and proton transfer to ReH2(CO)(NO)(PR3)2 and ReHCl(CO)(NO)(PMe3)2 by IR and X-ray studies. J Organomet Chem 610:58–70CrossRefGoogle Scholar
  54. 54.
    Allen FH (2002) The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Cryst B58:380–388CrossRefGoogle Scholar
  55. 55.
    Liu Q, Hoffmann R (1995) Theoretical aspects of a novel mode of hydrogen-hydrogen bonding. J Am Chem Soc 117:10108–10112CrossRefGoogle Scholar
  56. 56.
    Siegbahn PEM, Blomberg MRA, Svensson M (1994) PCI-X, a parametrized correlation method containing a single adjustable parameter X. Chem Phys Lett 223:35–45CrossRefGoogle Scholar
  57. 57.
    Siegbahn PEM, Svensson M, Boussard PJE (1995) First row bench mark tests of the PCI-X scheme. J Chem Phys 102:5377–5386CrossRefGoogle Scholar
  58. 58.
    Grabowski SJ (1999) Study of correlations for dihydrogen bonds by quantum-chemical calculations. Chem Phys Lett 312:542–547CrossRefGoogle Scholar
  59. 59.
    Grabowski SJ (2000) High-level ab initio calculations of dihydrogen-bonded complexes. J Phys Chem A 104:5551–5557CrossRefGoogle Scholar
  60. 60.
    Kitaura K, Morokuma K (1976) A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation. Int J Quantum Chem 10:325–340CrossRefGoogle Scholar
  61. 61.
    Cybulski SM, Chałasiński G, Moszyński R (1990) On decomposition of MP2 supermolecular interaction energy and basis set effects. J Chem Phys 92:4357–4363CrossRefGoogle Scholar
  62. 6.
    Cybulski H, Pecul M, Sadlej J (2003) Characterization of dihydrogen-bonded D–H…H–A complexes on the basis of infrared and magnetic resonance spectroscopic parameters. J Chem Phys 119:5094–5104CrossRefGoogle Scholar
  63. 63.
    Kar T, Scheiner S (2003) Comparison between hydrogen and dihydrogen bonds among H3BNH3, H2BNH2, and NH3. J Chem Phys 119:1473–1482CrossRefGoogle Scholar
  64. 64.
    Alkorta I, Elguero J, Mó O, Yánez M, Del Bene JE (2002) Ab Initio study of the structural, energetic, bonding, and IR spectroscopic properties of complexes with dihydrogen bonds. J Phys Chem A 106:9325–9330CrossRefGoogle Scholar
  65. 65.
    Del Bene JE, Perera SA, Bartlett RJ, Alkorta I, Elguero J, Mó O, Yánez M (2002) One-bond (1dJH–H) and three-bond (3dJX–M) spin-spin coupling constants across X–H…H–M dihydrogen bonds. J Phys Chem A 106:9331–9337Google Scholar
  66. 66.
    Grabowski SJ, Robinson TL, Leszczynski J (2004) Strong dihydrogen bonds—ab initio and atoms in molecules study. Chem Phys Lett 386:44–48CrossRefGoogle Scholar
  67. 67.
    Sokalski WA, Roszak S, Pecul K (1988) An efficient procedure for decomposition of the SCF interaction energy into components with reduced basis set dependence. Chem Phys Lett 153:153–159CrossRefGoogle Scholar
  68. 68.
    Sokalski WA, Roszak S (1991) Efficient techniques for the decomposition of intermolecular interaction energy at SCF level and beyond. J Mol Struct (Theochem) 234:387–400CrossRefGoogle Scholar
  69. 69.
    Grabowski SJ, Sokalski WA, Leszczynski J (2005) How short can the H…H intermolecular contact be? New findings that reveal the covalent nature of extremely strong interactions. J Phys Chem A 109:4331–4341CrossRefGoogle Scholar
  70. 70.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566CrossRefGoogle Scholar
  71. 71.
    Schmidt MS, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comp Chem 14:1347–1363Google Scholar
  72. 72.
    Grabowski SJ, Sokalski WA, Dyguda E, Leszczynski J (2006) Quantitative classification of covalent and noncovalent H-bonds. J Phys Chem B 110:6444–6446CrossRefGoogle Scholar
  73. 73.
    Grabowski SJ (2009) Covalent character of hydrogen bonds enhanced by π-electron delocalization. Croat Chem Acta 82:185–192Google Scholar
  74. 74.
    Desiraju GR (2002) Hydrogen bridges in crystal engineering: interactions without borders. Acc Chem Res 35:565–573CrossRefGoogle Scholar
  75. 75.
    Grabowski SJ, Sokalski WA, Leszczynski J (2007) Wide spectrum of H…H interactions: van der Waals contacts, dihydrogen bonds and covalency. Chem Phys 337:68–76CrossRefGoogle Scholar
  76. 76.
    Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer-Verlag: BerlinCrossRefGoogle Scholar
  77. 77.
    Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press: New YorkGoogle Scholar
  78. 78.
    Hobza P, Havlas Z (2000) Blue-shifting hydrogen bonds. Chem Rev 100:4253–4264CrossRefGoogle Scholar
  79. 79.
    Feng Y, Zhao S-W, Liu L, Wang J-T, Li X-S, Guo Q-X (2004) Blue-shifted dihydrogen bonds. J Phys Org Chem 17:1099–1106CrossRefGoogle Scholar
  80. 80.
    Yang Y, Zhang W (2007) Theoretical study of N–H…H–B blue-shifted dihydrogen bonds. J Mol Struct (Theochem) 814:113–117CrossRefGoogle Scholar
  81. 81.
    Yu W, Lin Z, Huang Z (2006) Coexistence of dihydrogen, blue and red-shifting hydrogen bonds in an ultrasmall system: valine. ChemPhysChem 7:828–830CrossRefGoogle Scholar
  82. 82.
    Trung NT, Hue TT, Nguyen MT, Zeegers-Huyskens T (2008) Theoretical study of the interaction between HNZ (Z = O, S) and H2XNH2 (X = B, Al). Conventional and dihydrogen bonds. Phys Chem Chem Phys 10:5105–5113CrossRefGoogle Scholar
  83. 83.
    Grabowski SJ (2011) What is the covalency of hydrogen bonding? Chem Rev 11:2597–2625CrossRefGoogle Scholar
  84. 84.
    Weinhold F, Landis C (2005) Valency and bonding, a natural bond orbital donor—acceptor perspective. Cambridge University Press: Cambridge, UKGoogle Scholar
  85. 85.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  86. 86.
    Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003) Electronic basis of improper hydrogen bonding: a subtle balance of hyperconjugation and rehybridization. J Am Chem Soc 125:5973–5987CrossRefGoogle Scholar
  87. 87.
    Weinhold F, Klein R (2012) What is a hydrogen bond? Mutually consistent theoretical and experimental criteria for characterizing H-bonding interactions. Mol Phys 110:565–579CrossRefGoogle Scholar
  88. 88.
    Alkorta I, Elguero J, Grabowski SJ (2008) How to determine whether intramolecular H…H interactions can be classified as dihydrogen bonds. J Phys Chem A 112:2721–2727CrossRefGoogle Scholar
  89. 89.
    Grabowski SJ (2011) Halogen bond and its counterparts: Bent’s rule explains the formation of nonbonding interactions. J Phys Chem A 115:12340–12347CrossRefGoogle Scholar
  90. 90.
    Grabowski SJ (2012) QTAIM characteristics of halogen bond and related interactions. J Phys Chem A 116:1838–1845CrossRefGoogle Scholar
  91. 91.
    Grabowski SJ (2013) Non-covalent interactions—QTAIM and NBO analysis. J Mol Model 19:4713–4721CrossRefGoogle Scholar
  92. 92.
    Bent HA (1961) An appraisal of valence-bond structures and hybridization in compounds of the first-row elements. Chem Rev 61:275–311CrossRefGoogle Scholar
  93. 93.
    Grabowski SJ (2011) Red- and blue-shifted hydrogen bonds: the Bent rule from quantum theory of atoms in molecules perspective. J Phys Chem A 115:12789–12799Google Scholar
  94. 94.
    Bader RFW (1985) Atoms in molecules. Acc Chem Res 18:9–15CrossRefGoogle Scholar
  95. 95.
    Bader RFW (1990) Atoms in molecules, a quantum theory. Oxford University Press, OxfordGoogle Scholar
  96. 96.
    Bader RFW (2009) Bond paths are not chemical bonds. J Phys Chem A 113:10391–10396Google Scholar
  97. 97.
    Grabowski SJ, Ugalde JM (2010) Bond paths show preferable interactions: ab initio and QTAIM studies on the X–H· · ·π hydrogen bond. J Phys Chem A 114:7223–7229CrossRefGoogle Scholar
  98. 98.
    Koch U, Popelier PLA (1995) Characterization of C–H–O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754CrossRefGoogle Scholar
  99. 99.
    Popelier PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102:1873–1878CrossRefGoogle Scholar
  100. 100.
    Cramer CJ, Gladfelter WL (1997) Ab initio characterization of [H3N.BH3]2, [ H3N.A1H3]2, and [H3N.GaH3]2. Inorg Chem 36:5358–5362CrossRefGoogle Scholar
  101. 101.
    Cremer D, Kraka E (1984) A description of the chemical-bond in terms of local properties of electrodensity and energy. Croat Chem Acta 57:1259–1281Google Scholar
  102. 102.
    Jenkins S, Morrison I (2000) The chemical character of the intermolecular bonds of seven phases of ice as revealed by ab initio calculation of electron densities. Chem Phys Lett 317:97–102CrossRefGoogle Scholar
  103. 103.
    Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122:1154–11161CrossRefGoogle Scholar
  104. 104.
    Domagała M, Grabowski SJ (2009) X–H…π and X–H…N hydrogen bonds—acetylene and hydrogen cyanide as proton acceptors. Chem Phys 363:42–48CrossRefGoogle Scholar
  105. 105.
    Urban J, Roszak S, Leszczynski J (2001) Shellvation of the ammonium cation by molecular hydrogen: a theoretical study. Chem Phys Lett 346:512–518CrossRefGoogle Scholar
  106. 106.
    Szymczak JJ, Grabowski SJ, Roszak S, Leszczynski J (2004) H…σ interactions—an ab initio and “atoms in molecules” study. Chem Phys Lett 393:81–86CrossRefGoogle Scholar
  107. 107.
    Grabowski SJ, Lipkowski P (2011) Characteristics of X–H…π interactions: ab initio and QTAIM studies. J Phys Chem A 115:4765–4773.CrossRefGoogle Scholar
  108. 108.
    Grabowski SJ, Sokalski WA, Leszczynski J (2006) Can H…σ, π…H+…σ and σ…H+…σ interactions be classified as H-bonded? Chem Phys Lett 432:33–39CrossRefGoogle Scholar
  109. 109.
    Grabowski SJ (2007) Hydrogen bonds with π and σ electrons as the multicenter proton acceptors: high level ab initio calculations. J Phys Chem A 111:3387–3393CrossRefGoogle Scholar
  110. 110.
    Grabowski SJ, Alkorta I, Elguero J (2013) Complexes between dihydrogen and amine, phosphine, and arsine derivatives. Hydrogen bond versus pnictogen interaction. J Phys Chem A 117:3243–3251CrossRefGoogle Scholar
  111. 111.
    Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Definition of the hydrogen bond. Pure Appl Chem 83:1637–1641Google Scholar
  112. 112.
    Jucks KW, Miller RE (1987) Infrared Stark spectroscopy on the hydrogen-HF binary complex. J Chem Phys 87:5629–5633Google Scholar
  113. 113.
    Moore DT, Miller RE (2003) Dynamics of hydrogen–HF complexes in helium nanodroplets. J Chem Phys 118:9629–9636CrossRefGoogle Scholar
  114. 114.
    Moore DT, Miller RE (2003) Solvation of HF by molecular hydrogen: helium nanodroplet vibrational spectroscopy. J Phys Chem A 107:10805–10812CrossRefGoogle Scholar
  115. 115.
    Moore DT, Miller RE (2004) Rotationally resolved infrared laser spectroscopy of (H2)n–HF and (D2)n–HF (n = 2–6) in helium nanodroplets. J Phys Chem A 108:1930–1937CrossRefGoogle Scholar
  116. 116.
    Bieske EJ, Nizkorodov SA, Bennett FR, Maier JP (1995) The infrared spectrum of the H2–HCO1 complex. J Chem Phys 102:5152–5164CrossRefGoogle Scholar
  117. 117.
    Lipkowski P, Grabowski SJ, Leszczynski J (2006) Properties of the halogen-hydride interaction: an ab initio and “Atoms in Molecules” analysis. J Phys Chem A 110:10296–10302CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHUDonostia International Physics Center (DIPC)DonostiaSpain
  2. 2.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations