Agostic and Hydrogen-Bonding X–H…M Interactions Involving a d8 Metal Center: Recent Advances Towards Their Understanding

  • Jiří KozelkaEmail author
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 19)


The binding of d8 transition metal ions to X–H bonds (X = non-metal) has been subject of intense research in the last two decades. Two different types of orbital interactions can stabilize X–H…M bonds: (1) charge transfer from a filled orbital of the metal into the empty σ*-antibonding orbital of the X–H bond; (2) charge transfer from the filled σ-bonding orbital of the X–H bond into an empty orbital of the metal. The first type corresponds to a hydrogen bond, whereas the second is commonly designated as an agostic bond. The present article analyses experimental and theoretical approaches to the characterization of these two interaction types in d8 transition metal complexes, points out some assignment errors that occurred in the past, and summarizes recent advances towards the understanding of the structure, dynamics, and physical origin of these weak interactions.


Natural Bond Orbital Bond Critical Point Natural Bond Orbital Analysis Antibonding Orbital Charge Transfer Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to thank all students and colleagues whom I was lucky to work with. Their names figure in the correponding references. I acknowledge support with platinum chemicals from W. C. Heraeus GmbH and financial support from the Hubert-Curien program “Galileo” and from COST (Action D39/0004/06).


  1. 1.
    Clot E, Eisenstein O (2004) Agostic interactions from a computational perspective: one name, many interpretations. Struct Bond 113:1–36CrossRefGoogle Scholar
  2. 2.
    Brookhart M, Green MLH, Parkin G (2007) Agostic interactions in transition metal compounds. Proc Nat Acad Sci USA 104:6908–6914CrossRefGoogle Scholar
  3. 3.
    Lein M (2009) Characterization of agostic interactions in theory and computation. Coord Chem Rev 253:625–634CrossRefGoogle Scholar
  4. 4.
    Scherer W, Herz V, Hauf C (2012) On the nature of β-agostic interactions: a comparison between the molecular orbital and charge density picture. Struct Bond 146:159–208CrossRefGoogle Scholar
  5. 5.
    Martín A (1999) Hydrogen bonds involving transition metal centers acting as proton acceptors. J Chem Ed 76:578–583CrossRefGoogle Scholar
  6. 6.
    Brammer L (2003) Metals and hydrogen bonds. Dalton Trans 3145–3157Google Scholar
  7. 7.
    Calhorda MJ (2006) In: Grabowski SJ (ed) Hydrogen bonding- new insights, vol 3. Springer, Dordrecht, pp 245–262CrossRefGoogle Scholar
  8. 8.
    Bruno G, Lanza S, Nicolò F (1990) Structure of [Pt(C6H5)2(btz-N, N’)].CHCl3, btz=2,2’-Bi-5,6-dihydro-4H-1,3-thiazine. Acta Cryst C 46:765–767CrossRefGoogle Scholar
  9. 9.
    Carr N, Dunne BJ, Orpen AG, Spencer JL (1988) Co-ordinatively unsaturated diphosphine platinum(II) alkyl cations: a new class of β-agostic complexes. J Chem Soc Chem Commun 926–928Google Scholar
  10. 10.
    Ingleson MJ, Mahon MF, Weller AS (2004) [PtMe(iPr3P)2]+: a Pt(II) complex with an agostic interaction that undergoes C–H activation. Chem Commun 2398–2399Google Scholar
  11. 11.
    Baratta W, Stoccoro S, Doppiu A, Herdtweck E, Zucca A, Rigo P (2003) Novel T-shaped 14-electron platinum(II) complexes stabilized by one agostic interaction. Angew Chem Int Ed 42:105–108CrossRefGoogle Scholar
  12. 12.
    Brookhart M, Green MLH (1983) Carbon-hydrogen-transition metal bonds. J Organomet Chem 250:395–408CrossRefGoogle Scholar
  13. 13.
    Roe DM, Bailey PM, Moseley K, Maitlis PM (1972) Structure of bromobis(triphenyl-phosphine)-(1,2,3,4-tetrakisrnethoxycarbonylbuta-1,3-dienyl)palladium and evidence for a C–H…Pd interaction. J Chem Soc Chem Commun 1273–1274Google Scholar
  14. 14.
    Bailey NA, Jenkins JM, Mason R, Shaw BL (1965) Unusual co-ordination of the palladous ion in the structure of trans-di-iodobis(dimethylphenylphosphine)palladium(II). J Chem Soc Chem Commun 237Google Scholar
  15. 15.
    Albinati A, Anklin CG, Pregosin PS (1984) Platinum induced C–H activation in aromatic aldehydes. Unusual J(Pt, H) coupling constants and structure of trans-dichloroquinoline-8-carboxaldehyde triethylphosphine platinum(II). Inorg Chim Acta 90:L37–L38CrossRefGoogle Scholar
  16. 16.
    Albinati A, Arz C, Pregosin PS (1987)nJ(Pt, H) and Pt–H–C interactions in Schiff base complexes of 2-(benzylideneamino)-3-methylpyridine. Molecular structures of dichloro(2-((2,4,6-trimethylbenzylidene)amino)-3-methylpyridine)(triethylarsine)platinum(II) and dichloro-(2-amino-3-methylpyridine)(triethylphosphine)palladium(II). Inorg Chem 26:508–513CrossRefGoogle Scholar
  17. 17.
    Albinati A, Anklin CG, Ganazzoli F, Rüegg H, Pregosin PS (1987) Preparative and 1H NMR spectroscopic studies on palladium(II) and platinum(II) quinoline-8-carbaldehyde (1) complexes. X-ray Structures of the cyclometalated acyl complex PdCl(C(O)C9H6N)(PPh3).PPh3 and trans-PtCl2(1)(PEt3). Inorg Chem 26:503–508CrossRefGoogle Scholar
  18. 18.
    Albinati A, Pregosin PS, Wombacher F (1990) Weak Pt–H–C interactions. Extensions to 8-methylquinoline, benzoquinoline, and a tetralone schiff base. X-ray crystal structure of trans-PtCl2(benzoquinoline)(PEt3). Inorg Chem 29:1812–1817CrossRefGoogle Scholar
  19. 19.
    Bortolin B, Bucher U, Ruegger H, Venanzi LM, Albinati A, Lianza F (1992) Synthesis and 2D NMR studies of {bis(pyrazolyl)borato}rhodium(I) complexes with weak Rh…H–C interactions and the x-ray crystal structure of {(cyclooctane-1,5-diyl)bis(pyrazol-1-yl)borato}(1,5-cyclooctadiene)rhodium. Organometallics 11:2513–2521CrossRefGoogle Scholar
  20. 20.
    Albinati A, Lianza F, Pregosin PS, Müller B (1994) New N–H…Pt Interactions. The nature of the bond. Inorg Chem 33:2522–2526CrossRefGoogle Scholar
  21. 21.
    Neve F, Ghedini M, Crispini A (1992) Weak Rh–H–C interactions. Molecular structure of [trans–Rh(CO)(8-methylquinoline)(PPh3]BF4. Organometallics 11:3324–3327CrossRefGoogle Scholar
  22. 22.
    Neve F, Ghedini M, De Munno G, Crispini A (1991) Aromatic and benzylic C–H activation. Synthesis and structural characterization of iridium 2-phenylpyridine and 8-methylquinoline complexes. Organometallics 11:1143–1148CrossRefGoogle Scholar
  23. 23.
    Calhorda MJ (2000) Weak hydrogen bonds: theoretical studies. Chem Comun 801–809Google Scholar
  24. 24.
    Lewis JC, Wu J, Bergman RG, Ellman JA (2005) Preagostic Rh–H interactions and C–H bond functionalization: a combined experimental and theoretical investigation of rhodium(I) phosphinite complexes. Organometallics 24:5737–5746CrossRefGoogle Scholar
  25. 25.
    Zhang Y, Lewis JC, Bergman RG, Ellman JA, Oldfield E (2006) NMR shifts, orbitals, and M…H–X bonding in d8 square planar metal complexes. Organometallics 25:3515–3519CrossRefGoogle Scholar
  26. 26.
    Mukhopadhyay A, Pal S (2006) Intramolecular apical C–H…M interactions in square-planar nickel(II) complexes with dianionic tridentate ligands and 2-phenylimidazole. Eur J Inorg Chem 4879–4887Google Scholar
  27. 27.
    Taubmann C, Öfele K, Herdweck E, Hermann WA (2008) Complexation of (5H)-dibenzo[a, d]cyclohepten-5-ylidene to palladium(II) via the diazo route and evidence of C–H…Pd Interactions. Organometallics 28:4254–4257CrossRefGoogle Scholar
  28. 28.
    Schöler S, Wahl MH, Wurster NIC, Puls A, Hättig C, Dyker G (2014) Bidentate cycloimidate palladium complexes with aliphatic and aromatic anagostic bonds. Chem Comun 50:5909–5911CrossRefGoogle Scholar
  29. 29.
    Yao W, Eisenstein O, Crabtree RH (1997) Interactions between C–H and N–H bonds and d8 square planar metal complexes: hydrogen-bonded or agostic? Inorg Chim Acta 254:105–111CrossRefGoogle Scholar
  30. 30.
    Sundquist WI, Bancroft DP, Lippard SJ (1990) Synthesis, characterization, and biological activity of cis-diammineplatinum(II) complexes of the DNA intercalators 9-aminoacridine and chloroquine. J Am Chem Soc 112:1590–1596CrossRefGoogle Scholar
  31. 31.
    Deeming AJ, Rothwell IP, Hursthouse MB, New L (1970) Comparison of 8-methylquinoline and benzo[h]quinoline complexes of palladium(II) with those of related ligands. Crystal and molecular structure of aqua(benzo[h]quinoline)[2-(dimethylaminomethyl)phenyl-N]palladium(II) perchlorate. J Chem Soc Dalton Trans 1489–1496Google Scholar
  32. 32.
    Hambley TW (1998) Van der Waals radii of Pt(II) and Pd(II) in molecular mechanics models and an analysis of their relevance to the description of axial M…H(–C), M…H(–N), M…S and M…M (M=Pd(II) or Pt(II)) interactions. Inorg Chem 37:3767–3774CrossRefGoogle Scholar
  33. 33.
    Braga D, Grepioni F, Tedesco E, Biradha K, Desiraju GR (1997) Hydrogen bonding in organometallic crystals. 6. X--H---M hydrogen bonds and M---(H--X) pseudo-agostic bonds. Organometallics 16:1846–1856CrossRefGoogle Scholar
  34. 34.
    Brammer L, Charnock JM, Goggin PL, Goodfellow RJ, Koetzle TF, Orpen AG (1987) Hydrogen bonding by cisplatin derivatives: evidence for the formation of N–H…Cl and N–H…Pt bonds in [NPrn 4]{[PtCl4] · cis–[PtCl2(NH2Me)2]}. J Chem Soc Chem Commun 443–445Google Scholar
  35. 35.
    Casas JM, Falvello LR, Forniés J, Martín A (1996) Syntheses and structures of the complexes cis–[M(C6F5)2(N–X)] (M=Pd, Pt; N–X=2-iodoaniline, 2-benzoylpyridine) containing N–X acting as a didentate chelating ligand and displaying I–M or O–M interactions. Inorg Chem 35:56–62CrossRefGoogle Scholar
  36. 36.
    Rizzato S, Bergès J, Mason SA, Albinati A, Kozelka J (2010) Dispersion-driven hydrogen bonding: predicted hydrogen bond between water and platinum(II) identified by neutron diffraction. Angew Chem Int Ed 49:7440–7443CrossRefGoogle Scholar
  37. 37.
    Buckingham AD, Stephens JP (1964) Proton chemical shifts in the nuclear magnetic resonance spectra of transition-metal hydrides: square-planar platinum(II) complexes. J Chem Soc 4583–4587Google Scholar
  38. 38.
    Miller RG, Stauffer RD, Fahey DR, Parnell DR (1970) Alkenaryl compounds of nickel(II) and palladium(II). Influence of the transition metal on ligand proton chemical shifts. J Am Chem Soc 92:1511–1521CrossRefGoogle Scholar
  39. 39.
    Chatt J, Duncanson LA, Shaw BL (1957) A volatile chlorohydride of platinum. Proc Chem Soc 343Google Scholar
  40. 40.
    Chatt J, Shaw BL (1962) Hydrido-complexes of platinum(II). J Chem Soc 5075–5084Google Scholar
  41. 41.
    Church MJ, Mays MJ (1968) Spectroscopic studies on some new cationic complexes of platinum(II). J Chem Soc (A):3074–3078Google Scholar
  42. 42.
    Bercaw JE, Marvich RH, Bell LG, Brintzinger HH (1972) Titanocene as an intermediate in reactions involving molecular hydrogen and nitrogen. J Am Chem Soc 94:1219–1238CrossRefGoogle Scholar
  43. 43.
    Manriquez JM, McAlister DR, Sanner RD, Bercaw JE (1978) Reduction of carbon monoxide promoted by alkyl and hydride derivatives of permethylzirconocene. J Am Chem Soc 100:2716–2724CrossRefGoogle Scholar
  44. 44.
    Caulton KG, Goeden GV (1981) Soluble copper hydrides: solution behavior and reactions related to CO hydrogenation. J Am Chem Soc 103:7354–7355CrossRefGoogle Scholar
  45. 45.
    Ruiz-Morales Y, Schreckenbach G, Ziegler T (1996) Origin of the hydridic 1H NMR chemical shift in low-valent transition-metal hydrides. Organometallics 15:3920–3923CrossRefGoogle Scholar
  46. 46.
    Scherer W, Herz V, Brück A, Hauf C, Reiner F, Altmannshofer S, Leusser D, Stalke D (2011) The nature of β-agostic bonding in late-transition-metal alkyl complexes. Angew Chem Int Ed 50:2845–2849CrossRefGoogle Scholar
  47. 47.
    Conroy-Lewis FM, Mole L, Redhouse AD, Lister SA, Spencer JL (1991) Synthesis of coordinatively unsaturated diphosphine nickel(II) and palladium(II) β-agostic ethyl cations: X-ray crystal structure of [Ni{But2P(CH2)2PBut2}(C2H5)][BF4]. J Chem Soc Chem Commun 1601–1603Google Scholar
  48. 48.
    Pregosin PS, Rüegger H, Wombacher F, van Koten G, Grove DM, Wehman-Ooyevaar ICM (1992) New Pt…H–N bonds characterized by 15N-filtered and 2D NOESY 1H NMR spectroscopy. Magn Reson Chem 30:548–551CrossRefGoogle Scholar
  49. 49.
    Yoshida T, Tani K, Yamagata T, Tatsuno Y, Saito T (1990) Preparation and structure of [Rh{(h5–C5H4(2-C5H4N))(h5–C5H4PPh2)}(cod)]PF6 and [Ir(H){Fe[h5–C5H3(2-C5H4N)](h5–C5H4PPh2)}(cod)]PF6; a RhI complex having a C–H…RhI interaction and a hydrido IrIII complex (where cod = cyclo-octa-1,5-diene). Chem Commun 292–294Google Scholar
  50. 50.
    Hedden D, Roundhill DM, Fultz WC, Rheingold AL (1986) Reaction chemistry of some new hybrid phosphine amide complexes of platinum(II) and palladium(II). Isolation and X-ray structure determination of an ortho-metalated platinum(II) complex derived from a chelated phosphine amide complex of platinum(II). Organometallics 5:336–343CrossRefGoogle Scholar
  51. 51.
    Weinhold F, Klein RA (2012) What is a hydrogen bond? Mutually consistent theoretical and experimental criteria for characterizing H-bonding interactions. Mol Phys 110:565–579CrossRefGoogle Scholar
  52. 52.
    Li Y, Zhang G, Chen D (2012) Theoretical investigation of hydrogen bonding between water and platinum(II): an atom in molecule (AIM) study. Mol Phys 110:179–184CrossRefGoogle Scholar
  53. 53.
    Fedoce Lopes J Da Silva JCS Rocha WR De Almeida WB Dos Santos HF (2011) Quantum chemical study of cisplatin-water complexes: an investigation of electron correlation effects. J Chem Theory Comput 10:371–391CrossRefGoogle Scholar
  54. 54.
    Bergès J, Fourré I, Pilmé J, Kozelka J (2013) A quantum chemical topology study of the water-platinum(II) interaction. Inorg Chem 52:1217–1227CrossRefGoogle Scholar
  55. 55.
    Zhang G, Li X, Li Y, Chen D (2013) Electron density characteristics and charge transfer effect of hydrogen bond O–H…Pt(II): atoms in molecules study and natural bond orbital analysis. Mol Phys 111:3276–3282CrossRefGoogle Scholar
  56. 56.
    Baya M, Belio U, Martin A (2014) Synthesis, characterization, and computational study of complexes containing Pt…H hydrogen bonding interactions. Inorg Chem 53:189–200CrossRefGoogle Scholar
  57. 57.
    Thakur TS, Desiraju GR (2007) Theoretical investigation of C–H…M interactions in organometallic complexes: a natural bond orbital (NBO) study. J Mol Struct: THEOCHEM 810:143–154CrossRefGoogle Scholar
  58. 58.
    Stambuli JP, Incarvito CD, Bühl M, Hartwig JF (2004) Synthesis, structure, theoretical studies, and ligand exchange reactions of monomeric, T-shaped arylpalladium(II) halide complexes with an aditional, weak agostic interaction. J Am Chem Soc 126:1184–1194CrossRefGoogle Scholar
  59. 59.
    Sassmanshausen J (2011) Agostic or not? Detailed density functional theory studies of the compounds [LRh(CO)Cl], [LRh(COD)Cl] and [LRhCl] (L = cyclic (alkyl)(amino)carbene, COD = cyclooctadiene). Dalton Trans 40:136–141CrossRefGoogle Scholar
  60. 60.
    Andrae D, Häussermann U, Dolg M, Stoll H, Preuss H (1990) Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor Chim Acta 77:123–141CrossRefGoogle Scholar
  61. 61.
    Kozelka J, Bergès J (1998) Ab Initio calculations on cis–[PtCl2(PMe3)2]: search for a model chemistry for platinum(II) complexes. J Chim Phys 95:2226–2240CrossRefGoogle Scholar
  62. 62.
    Koch U, Popelier PLA (1995) Characterization of C–H–O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754CrossRefGoogle Scholar
  63. 63.
    Popelier PLA, Logotheties G (1998) Characterization of an agostic bond on the basis of the electron density. J Organomet Chem 555:101–111CrossRefGoogle Scholar
  64. 64.
    Lavallo V, Canac Y, DeHope A, Donnadieu B, Bertrand G (2005) A rigid cyclic (alkyl)(amino)carbene ligand leads to isolation of low-coordinate transition-metal complexes. Angew Chem Int Ed 44:7236–7239CrossRefGoogle Scholar
  65. 65.
    Parthasarathi R, Subramanian V, Sathyamurthy N (2006) Hydrogen bonding without borders: an atoms-in-molecules perspective. J Phys Chem A 110:3349–3351CrossRefGoogle Scholar
  66. 66.
    Kozelka J, Bergès J, Attias R, Fraitag J (2000) O–H…Pt(II): hydrogen bond with a strong dispersion component. Angew Chem Int Ed Engl 39:198–201CrossRefGoogle Scholar
  67. 67.
    Fedoce Lopes J, Rocha WR, Dos Santos HF, De Almeida WB (2008) Theoretical study of the potential energy surface for the interaction of cisplatin and their aquated species with water. J Chem Phys 128:165103CrossRefGoogle Scholar
  68. 68.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  69. 69.
    Reed AE, Weinhold F, Curtiss LA, Pochatko DJ (1986) Natural bond orbital analysis of molecular interactions: theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O and NH3. J Chem Phys 84:5687–5705CrossRefGoogle Scholar
  70. 70.
    Cappelletti D, Ronca E, Belpassi L, Tarantelli F, Pirani F (2012) Revealing charge-transfer effects in gas-phase water chemistry. Acc Chem Res 45:1571–1580CrossRefGoogle Scholar
  71. 71.
    Belpassi L, Infante I, Tarantelli F, Visscher L (2008) The chemical bond between Au(I) and the noble gases. Comparative study of NgAuF and NgAu+(Ng = Ar, Kr, Xe) by density functional and coupled cluster methods. J Am Chem Soc 130:1048–1060CrossRefGoogle Scholar
  72. 72.
    Belpassi L, Tarantelli F, Pirani F, Candori P, Cappelletti D (2009) Experimental and theoretical evidence of charge transfer in weakly bound complexes of water. Phys Chem Chem Phys 11:9970–9975CrossRefGoogle Scholar
  73. 73.
    Vidossich P, Ortuno MA, Ujaque G, Lledos A (2011) Do metal…water hydrogen bonds hold in solution? Insight from ab initio molecular dynamics simulations. Chem Phys Chem 12:1666–1668Google Scholar
  74. 74.
    Truflandier LA, Sutter K, Autschbach J (2011) Solvent effects and dynamic averaging of 195Pt NMR shielding in cisplatin derivatives. Inorg Chem 50:1723–1732CrossRefGoogle Scholar
  75. 75.
    Truflandier LA, Autschbach J (2010) Probing the solvent shell with 195Pt chemical shifts: density functional theory molecular dynamics study of PtII and PtIV anionic complexes in aqueous solution J Am Chem Soc 132:3472–3483CrossRefGoogle Scholar
  76. 76.
    Lau JK-C, Ensing B (2010) Hydrolysis of cisplatin—a first-principles metadynamics study. Phys Chem Chem Phys 12:10348–10355CrossRefGoogle Scholar
  77. 77.
    Martin DS Jr (1967) Anomalies in ligand exchange reactions for platinum(II) complexes. Inorg Chim Acta Reviews 87–97Google Scholar
  78. 78.
    Beret EC, Pappalardo RR, Doltsinis NL, Marx D, Sánchez Marcos E (2008) Aqueous PdII and PtII: anionic hydration revealed by Car-Parrinello simulations. ChemPhysChem 9:237–240CrossRefGoogle Scholar
  79. 79.
    Beret EC, Martínez JM, Pappalardo RR, Sánchez Marcos E, Doltsinis NL, Marx D (2008) Explaining asymmetric solvation of Pt(II) versus Pd(II) in aqueous solution revealed by ab initio molecular dynamics simulations. J Chem Theory Comput 4:2108–2121CrossRefGoogle Scholar
  80. 80.
    Wei CH, Hingerty BE, Busing WR (1989) Structure of tetrakis(pyridine)platinum(II) chloride trihydrate: unconstrained anisotropic least-squares refinement of hydrogen and non-hydrogen atoms from combined X-ray-neutron diffraction data. Acta Cryst C 45:26–30CrossRefGoogle Scholar
  81. 81.
    Urtel H, Meier C, Eisenträger F, Rominger F, Joschek JP, Hofmann P (2001) A neutral three-coordinate alkylrhodium(I) complex: Stabilization of a 14-electron species by γ–C–H agostic interactions with a saturated hydrocarbon group. Angew Chem Int Ed 40:781–784CrossRefGoogle Scholar
  82. 82.
    Yamashita M, Hartwig JF (2004) Synthesis, structure, and reductive elimination chemistry of three-coordinate arylpalladium amido complexes. J Am Chem Soc 126:5344CrossRefGoogle Scholar
  83. 83.
    Ortuno MA, Vidossich P, Ujaque G, Conejero S, Lledos A (2013) Solution dynamics of agostic interactions in T-shaped Pt(II) complexes from ab initio molecular dynamics simulations. Dalton Trans 42:12165–12172CrossRefGoogle Scholar
  84. 84.
    Koutmos M, Datta, Pattridge KA, Smith JL, Matthews RG (2009) Insights into the reactivation of cobalamin-dependent methionine synthase. Proc Nat Acad Sci USA 106:18527–18532CrossRefGoogle Scholar
  85. 85.
    Jarrett JT, Choi CY, Matthews RG (1997) Changes in protonation associated with substrate binding and cob(I)alamin formation in cobalamin-dependent methionine synthase. Biochemistry 36:15739–15748CrossRefGoogle Scholar
  86. 86.
    Jarrett JT, Hoover DM, Ludwig ML, Matthews RG (1998) The mechanism of adenosylmethionine-dependent activation of methionine synthase: a rapid kinetic analysis of intermediates in reductive methylation of cob(II)alamin enzyme. Biochemistry 37:12649–12658CrossRefGoogle Scholar
  87. 87.
    Kumar M, Kozlowski PM (2011) A biologically relevant Co1+…H bond: possible implications in the protein-induced redox tuning of Co2+/Co1+ reduction. Angew Chem Int Ed 123:8861–8864CrossRefGoogle Scholar
  88. 88.
    Kumar M, Kumar N, Hirao H, Kozlowski PM (2012) Co2+/Co+ redox tuning in methyltransferases induced by a conformational change at the axial ligand. Inorg Chem 51:5533–5538CrossRefGoogle Scholar
  89. 89.
    Kumar M, Hirao H, Kozlowski PM (2012) Co+–H interaction inspired alternate coordination geometries of biologically important cob(I)alamin: possible structural and mechanistic consequences for methyltransferases. J Biol Inorg Chem 17:1107–1121CrossRefGoogle Scholar
  90. 90.
    Kumar M, Kozlowski PM (2013) Can the local enzyme scaffold act as an H-donor for a Co(I)–H bond formation? The curious case of methionine synthase-bound cob(I)alamin. J Inorg Biochem 126:26–34CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRSUniversité Paris DescartesParisFrance
  2. 2.Department of Condensed Matter Physics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations