Advertisement

Understanding Lone Pair-π Interactions from Electrostatic Viewpoint

  • Shridhar R. GadreEmail author
  • Anmol Kumar
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 19)

Abstract

Over the last two decades, studies on lone pair-π interaction have attracted lot of attention of experimental as well as theoretical chemists due to its intriguing nature and its suspected presence in biological systems. The present Chapter begins with a brief overview of the earlier theoretical and experimental work done in this area. This is followed by exploration of the nuances of bonding in lone pair-π interaction, employing the tool of molecular electrostatic potential (MESP) since such weak interactions are mainly dominated by electrostatic features of host and guest molecules. The critical points associated with the scalar field of MESP are exploited for scrutinizing the directionality and bonding sites involved in the lone pair-π complexes. Furthermore, the electrostatic potential for intermolecular complexation (EPIC) model developed by Gadre et al., has been employed for finding out the electrostatically optimized structures and interaction energies of these complexes. The outcomes of EPIC model are compared with the results obtained from quantum chemical calculations of the complexes employing M06L/6-311++G(d,p) level of theory. The present study details out four different cases of lone pair-π complexes, which are currently in vogue. Hexafluorobenzene, one of the most explored π-deficient host in the present context, is initially taken up to demonstrate various facets of MESP for gaining insights into this interaction. This is followed by the scrutiny of special classes of recently synthesized highly π-deficient molecules, viz. tetraoxacalix [2]arene[2]triazine and naphthalenediimide, which are known to have specificity and large affinity, respectively, towards the electron rich species. The chapter ends with the description of lone pair-π interaction in the case of urate oxidase, an enzyme present in biological systems.

Keywords

Lone pair-π interaction Anion-π interaction Molecular electrostatic potential Topographical analysis Critical point Hexafluorobenzene Tetraoxacalix[2]arene[2]triazine Naphthalenediimide Urate oxidase 

Notes

Acknowledgements

Authors are thankful to Dr. C. H. Suresh and Dr. P. Balanarayan for fruitful discussions. Anmol Kumar thanks the Council of Scientific and Industrial Research (CSIR) for research fellowship. Professor Shridhar Gadre is grateful to the Department of Science and Technology (DST), New Delhi for the award of J. C. Bose National Fellowship.

References

  1. 1.
    Némethy G, Scheraga HA (1962) J Chem Phys 36:3382–3400Google Scholar
  2. 2.
    Tzalis D, Tor Y (1996) Tetrahedron Lett 37:8293 – 8296Google Scholar
  3. 3.
    Müller-Dethlefs K, Hobza P (2000) Chem Rev 100:143–168Google Scholar
  4. 4.
    Duncan R, Kopeček J (1984) Soluble synthetic polymers as potential drug carriers. In: Polymers in medicine, vol. 57.Springer, BerlinGoogle Scholar
  5. 5.
    Huck WTS, Prins LJ, Fokkens RH, Nibbering NMM, van Veggel FCJM, Reinhoudt DN (1998) J Am Chem Soc 120:6240–6246Google Scholar
  6. 6.
    Zhong W, Gallivan JP, Zhang Y, Li L, Lester HA, Dougherty DA (1998) Proc Nat Acad Sci USA 95:12088–12093Google Scholar
  7. 7.
    Mecozzi S, West AP, Dougherty DA (1996) J Am Chem Soc 118:2307–2308Google Scholar
  8. 8.
    McCurdy A, Jimenez L, Stauffer DA, Dougherty DA (1992) J Am Chem Soc 114:10314–10321Google Scholar
  9. 9.
    Wheeler SE, Houk KN (2009) J Am Chem Soc 131:3126–3127Google Scholar
  10. 10.
    Sayyed FB, Suresh CH (2012) J Phys Chem A 116:5723–5732Google Scholar
  11. 11.
    Sayyed FB, Suresh CH (2012) Chem Phys Lett 523:11–14Google Scholar
  12. 12.
    Sayyed FB, Suresh CH (2011) J Phys Chem A 115:9300–9307Google Scholar
  13. 13.
    Mahadevi AS, Sastry GN (2013) Chem Rev 113:2100–2138Google Scholar
  14. 14.
    Egli M, Sarkhel S (2007)Acc Chem Res 40:197–205Google Scholar
  15. 15.
    Caltagirone C, Gale PA (2009) Chem Soc Rev 38:520–563Google Scholar
  16. 16.
    Wenzel M, Hiscock JR, Gale PA (2012) Chem Soc Rev 41:480–520Google Scholar
  17. 17.
    Gale PA, Busschaert N, Haynes CJE, Karagiannidis LE, Kirby IL (2014) Chem Soc Rev 43:205–241Google Scholar
  18. 18.
    Schottel BL, Chifotides HT, Dunbar KR (2008) Chem Soc Rev 37:68–83Google Scholar
  19. 19.
    Chifotides HT, Dunbar KR (2013) Acc Chem Res 46:894–906Google Scholar
  20. 20.
    Frontera A, Gamez P, Mascal M, Mooibroek TJ, Reedijk J (2011) Angew Chem Int Ed 50:9564–9583Google Scholar
  21. 21.
    Mooibroek TJ, Black CA, Gamez P, Reedijk J (2008) Cryst Growth Des 8:1082–1093Google Scholar
  22. 22.
    Quiñonero D, Garau C, Rotger C, Frontera A, Ballester P, Costa A, Deyà PM (2002) Angew Chem Int Ed 41:3389–3392Google Scholar
  23. 23.
    Boden N, Davis P, Stam C, Wesselink G (1973) Mol Phys 25:81–86Google Scholar
  24. 24.
    Vrbancich J, Ritchie GLD (1980) J Chem Soc Faraday Trans 2 76:648–659Google Scholar
  25. 25.
    Schneider H-J, Werner F, Blatter T (1993) J Phys Org Chem 6:590–594Google Scholar
  26. 26.
    Schneider H-J, Blatter T, Palm B, Pfingstag U, Ruediger V, Theis I (1992) J Am Chem Soc 114:7704–7708Google Scholar
  27. 27.
    Schneider H-J (1991) Angew Chem Int Ed 30:1417–1436Google Scholar
  28. 28.
    Alkorta I, Rozas I, Elguero J (1997) J Org Chem 62:4687–4691Google Scholar
  29. 29.
    Alkorta I, Rozas I, Elguero J (2002) J Am Chem Soc 124:8593–8598Google Scholar
  30. 30.
    Gallivan JP, Dougherty DA (1999) Org Lett 1:103–106Google Scholar
  31. 31.
    Alkorta I, Elguero J (2003) J Phys Chem A 107:9428–9433Google Scholar
  32. 32.
    Garau C, Frontera A, Quiñonero D, Ballester P, Costa A, Deyà PM (2003) Chem Phys Chem 4:1344–1348Google Scholar
  33. 33.
    Estarellas C, Frontera A, Quiñonero D, Deyà PM (2011) Chem Asian J 6:2316–2318Google Scholar
  34. 34.
    Estarellas C, Frontera A, Quiñonero D, Deyà PM (2011) Angew Chem Int Ed 50:415–418Google Scholar
  35. 35.
    Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887–1930Google Scholar
  36. 36.
    Lao KU, Herbert JM (2014) J Chem Phys 140:044108–8Google Scholar
  37. 37.
    Kim D, Tarakeshwar P, Kim KS (2004) J Phys Chem A 108:1250–1258Google Scholar
  38. 38.
    Demeshko S, Decher S, Meyer F (2004) J Am Chem Soc 126:4508–4509Google Scholar
  39. 39.
    de Hoog P, Gamez P, Mutikainen I, Turpeinen U, Reedijk J (2004) Angew Chem Int Ed 43:5815–5817Google Scholar
  40. 40.
    Frohn H, Giesen M, Welting D, Henkel G (1996) Eur J Solid State Inorg Chem 33:841–853Google Scholar
  41. 41.
    Sessler JL, Gale PA, Cho W-S (2006) Anion receptor chemistry, vol 8. Royal Society of ChemistryGoogle Scholar
  42. 42.
    Rosokha YS, Lindeman SV, Rosokha SV, Kochi JK (2004) Angew Chem Int Ed 43:4650–4652Google Scholar
  43. 43.
    Müller M, Albrecht M, Gossen V, Peters T, Hoffmann A, Raabe G, Valkonen A, Rissanen K (2010) Chem Eur J 16:12446–12453Google Scholar
  44. 44.
    Li S, Wang D-X, Wang M-X (2012) Tetrahedron Lett 53:6226–6229Google Scholar
  45. 45.
    Arranz-Mascarós P, Bazzicalupi C, Bianchi A, Giorgi C, Godino-Salido M-L, Gutiérrez-Valero M-D, Lopez-Garzón R, Savastano M (2013) J Am Chem S 135:102–105Google Scholar
  46. 46.
    Giese M, Albrecht M, Krappitz T, Peters M, Gossen V, Raabe G, Valkonen A, Rissanen K (2012) Chem Commun 48:9983–9985Google Scholar
  47. 47.
    Ballester P (2013) Acc Chem Res 46:874–884Google Scholar
  48. 48.
    Gil-Ramírez G, Escudero-Adán EC, Benet-Buchholz  J, Ballester  P (2008) Angew Chem 120:4182–4186Google Scholar
  49. 49.
    Schottel BL, Chifotides HT, Shatruk M, Chouai A, Pérez LM, Bacsa J, Dunbar KR (2006) J Am Chem Soc 128:5895–5912Google Scholar
  50. 50.
    Mareda J, Matile S (2009) Chem Eur J 15:28–37Google Scholar
  51. 51.
    Zhao Y, Domoto Y, Orentas E, Beuchat C, Emery D, Mareda J, Sakai N, Matile S (2013) Angew Chem Int Ed 52:9940–9943Google Scholar
  52. 52.
    Gorteau V, Julliard MD, Matile S (2008) J Membr Sci 321:37–42Google Scholar
  53. 53.
    Vargas Jentzsch A, Emery D, Mareda J, Metrangolo P, Resnati G, Matile S (2011) Angew Chem Int Ed 50:11675–11678Google Scholar
  54. 54.
    Lin N-T, Vargas Jentzsch A, Guenee L, Neudorfl J-M, Aziz S, Berkessel A, Orentas E, Sakai N, Matile S (2012) Chem Sci 3:1121–112Google Scholar
  55. 55.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242Google Scholar
  56. 56.
    Scrocco E, Tomasi J (1973) The electrostatic molecular potential as a tool for the interpretation of molecular properties. In New concepts II, vol 42. Springer, Berlin, pp 95–170Google Scholar
  57. 57.
    Tomasi J, Mennucci B, Cammy M (1996) Molecular electrostatic potentials: concepts and applications. Elsevier, AmsterdamGoogle Scholar
  58. 58.
    Tomasi J, Mennucci B, Cammi R (1996) Theor Comp Chem 3:1–103Google Scholar
  59. 59.
    Politzer P, Murray JS (2002) Theor Chem Acc 108:134–142Google Scholar
  60. 60.
    Yeole SD, Gadre SR (2011) J Phys Chem A 115:12769–12779Google Scholar
  61. 61.
    Balanarayan P, Kavathekar R, Gadre SR (2007) J Phys Chem A 111:2733–2738Google Scholar
  62. 62.
    Gadre SR, Shirsat RN (2000) Electrostatics of atoms and molecules. Universities Press, HyderabadGoogle Scholar
  63. 63.
    Gadre SR, Kulkarni SA, Shrivastava IH (1992) J Chem Phys 96:5253–5260Google Scholar
  64. 64.
    Balanarayan P, Gadre SR (2003) J Chem Phys 119:5037–5043Google Scholar
  65. 65.
    Shirsat RN, Bapat SV, Gadre SR (1992) Chem Phys Lett 200:373–378Google Scholar
  66. 66.
    Politzer P, Murray JS, Peralta-Inga Z (2001) Int J Quantum Chem 85:676–684Google Scholar
  67. 67.
    Politzer P, Landry SJ, Waernheim T (1982) J Phys Chem 86:4767–4771Google Scholar
  68. 68.
    Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:2286–2292Google Scholar
  69. 69.
    Politzer P, Murray JS, Lane P (2007) Int J Quantum Chem 107:3046–3052Google Scholar
  70. 70.
    Shields ZP, Murray JS, Politzer P (2010) Int J Quantum Chem 110:2823–2832Google Scholar
  71. 71.
    Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757Google Scholar
  72. 72.
    Suresh CH, Koga N, Gadre SR (2000) Organometallics 19:3008–3015Google Scholar
  73. 73.
    Elango M, Subramanian V, Rahalkar AP, Gadre SR, Sathyamurthy N (2008) J Phys Chem A 112:7699–7704Google Scholar
  74. 74.
    Kumar A, Gadre SR, Mohan N, Suresh CH (2014) J Phys Chem A 118:526–532Google Scholar
  75. 75.
    Mohan N, Suresh CH, Kumar A, Gadre SR (2013) Phys Chem Chem Phys 15:18401–18409Google Scholar
  76. 76.
    Suresh CH, Gadre SR (2007) J Phys Chem A 111:710–714Google Scholar
  77. 77.
    Suresh CH, Alexander P, Vijayalakshmi KP, Sajith P, Gadre SR (2008) Phys Chem Chem Phys 10:6492–6499Google Scholar
  78. 78.
    Pullman B (1990) Int J Quantum Chem 38:81–92Google Scholar
  79. 79.
    Pichon-Pesme V, Lecomte C (1998) Acta Crystallogr Sect B 54:485–493Google Scholar
  80. 80.
    Benabicha F, Pichon-Pesme V, Jelsch C, Lecomte C, Khmou A (2000) Acta Crystallogr Sect B 56:155–165Google Scholar
  81. 81.
    Bouhmaida N, Ghermani N-E, Lecomte C, Thalal A (1997) Acta Crystallogr Sect A 53:556–563Google Scholar
  82. 82.
    Bouhmaida N, Thalal A, Ghermani Ne, Lecomte C (1999) Acta Crystallogr Sect A 55:729–738Google Scholar
  83. 83.
    Gadre SR, Shrivastava IH (1991) J Chem Phys 94:4384–4390Google Scholar
  84. 84.
    Gadre SR, Pathak RK (1990) Proc Ind Acad Sci (Chem Sci) 102:189–192Google Scholar
  85. 85.
    Gadre SR, Pundlik SS (1997) J Phys Chem B 101:3298–3303Google Scholar
  86. 86.
    Pundlik SS, Gadre SR (1997) J Phys Chem B 101:9657–9662Google Scholar
  87. 87.
    Pingale SS, Gadre SR, Bartolotti LJ (1998) J Phys Chem A 102:9987–9992Google Scholar
  88. 88.
    Sivanesan D, Babu K, Gadre SR, Subramanian V, Ramasami T (2000) J Phys Chem A 104:10887–10894Google Scholar
  89. 89.
    Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101–194118Google Scholar
  90. 90.
    Frisch MJ et al (2009) Gaussian09 Revision D.01. Gaussian Inc. WallingfordGoogle Scholar
  91. 91.
    Boys S, Bernardi F (1970) Mol Phys 19:553–566Google Scholar
  92. 92.
    Gadre SR, Kulkarni SA, Suresh C, Shrivastava IH (1995) Chem Phys Lett 239:273–281Google Scholar
  93. 93.
    Yeole SD, López R, Gadre SR (2012) J Chem Phys 137:074116–074117Google Scholar
  94. 94.
    Rico JF, López R, Ramírez G, Ema I, Ludeñ EV (2004) J Comput Chem 25:1355–1363Google Scholar
  95. 95.
    Yeole SD, Gadre SR (2011) J Chem Phys 134:084111–084118Google Scholar
  96. 96.
    Wang D-X, Wang M-X (2013) J Am Chem Soc 135:892–897Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations