Interplay of Hydrogen, Halogen, Lithium and Beryllium Bonds in Complexes of Thiirane

  • Sean A. C. McDowellEmail author
  • Jerelle A. Joseph
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 19)


Hydrogen, halogen, lithium and beryllium bonding are briefly surveyed as a prelude to a report of a computational study of the interplay between these various non-covalent interactions. Our study used model dimers and trimers involving the thiirane molecule, (CH2)2S, complexed with small molecules like HF, ClF, BrF, LiF and BeH2 to assess and investigate the interplay between the different non-covalent interactions. The model trimer systems show positive cooperative effects when thiirane is one of the terminal molecules, whereas a negative cooperative effect is evident when it is at the center of the trimer. The changes in selected molecular properties, including the redistribution of charge densities obtained by the natural population analysis (NPA), implemented in the natural bond orbital (NBO) procedure, and an Atoms in Molecules (AIM) topological analysis, were useful in understanding these cooperative effects.


Lone Pair Natural Bond Orbital Cooperative Effect Halogen Bond Electron Density Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank the School for Graduate Studies and Research of the University of the West Indies, Cave Hill Campus, for financial support.


  1. 1.
    Pimentel G, McClellan A (1960) The hydrogen bond. W. H. Freeman & Co., San FranciscoGoogle Scholar
  2. 2.
    Henri-Rousseau O, Blaise P, Hadzi D (1997) Theoretical treatments of hydrogen bonding. Wiley, New YorkGoogle Scholar
  3. 3.
    Jeffrey GA (1997) An introduction to hydrogen bonding, vol 12. Oxford University Press, New YorkGoogle Scholar
  4. 4.
    Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New YorkGoogle Scholar
  5. 5.
    Desiraju GR (1999) Weak hydrogen bond. Oxford University Press, New YorkGoogle Scholar
  6. 6.
    Buckingham AD, Del Bene JE, McDowell SAC (2008) The hydrogen bond. Chem Phys Lett 463(1–3):1-10. doi:10.1016/j.cplett.2008.06.060CrossRefGoogle Scholar
  7. 7.
    Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Definition of the hydrogen bond (iupac recommendations 2011). Pure Appl Chem 83(8):1637–1641. doi:10.1351/pac-rec-10–01-02Google Scholar
  8. 8.
    Metrangolo P, Resnati G (2001) Halogen bonding: a paradigm in supramolecular chemistry. Chem-a Eur J 7(12):2511–2519. doi:10.1002/1521-3765(20010618)7:12<2511::aid-chem25110>;2-tCrossRefGoogle Scholar
  9. 9.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the sigma-hole. J Mol Model 13(2):291–296. doi:10.1007/s00894-006-0130-2CrossRefGoogle Scholar
  10. 10.
    Politzer P, Murray JS (2013) Halogen bonding: an interim discussion. Chemphyschem 14(2):278–294. doi:10.1002/cphc.201200799CrossRefGoogle Scholar
  11. 11.
    Bleiholder C, Werz DB, Koppel H, Gleiter R (2006) Theoretical investigations on chalcogen-chalcogen interactions: what makes these nonbonded interactions bonding? J Am Chem Soc 128(8):2666–2674. doi:10.1021/ja056827gCrossRefGoogle Scholar
  12. 12.
    Murray JS, Lane P, Clark T, Politzer P (2007) Sigma-hole bonding: molecules containing group vi atoms. J Mol Model 13(10):1033–1038. doi:10.1007/s00894-007-0225-4CrossRefGoogle Scholar
  13. 13.
    Murray JS, Lane P, Politzer P (2007) A predicted new type of directional noncovalent interaction. Int J Quantum Chem 107(12):2286–2292. doi:10.1002/qua.21352CrossRefGoogle Scholar
  14. 14.
    Murray JS, Lane P, Politzer P (2009) Expansion of the sigma-hole concept. J Mol Model 15(6):723–729. doi:10.1007/s00894-008-0386-9CrossRefGoogle Scholar
  15. 15.
    Bauza A, Mooibroek TJ, Frontera A (2013) Tetrel-bonding interaction: rediscovered supramolecular force? Angew Chem-Int Ed 52(47):12317–12321. doi:10.1002/anie.201306501CrossRefGoogle Scholar
  16. 16.
    Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci U S A 101(48):16789–16794. doi:10.1073/pnas.0407607101CrossRefGoogle Scholar
  17. 17.
    Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) An overview of halogen bonding. J Mol Model 13(2):305–311. doi:10.1007/s00894-006-0154-7CrossRefGoogle Scholar
  18. 18.
    Metrangolo P, Resnati G (2008) Halogen bonding: fundamentals and applications, vol 126. Springer,Google Scholar
  19. 19.
    Legon AC (2010) The halogen bond: an interim perspective. Phys Chem Chem Phys 12(28):7736–7747. doi:10.1039/c002129fCrossRefGoogle Scholar
  20. 20.
    Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12(28):7748–7757. doi:10.1039/c004189kCrossRefGoogle Scholar
  21. 21.
    Desiraju GR, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) Definition of the halogen bond (iupac recommendations 2013). Pure Appl Chem 85(8):1711–1713. doi:10.1351/pac-rec-12-05-10CrossRefGoogle Scholar
  22. 22.
    Politzer P, Murray JS, Clark T (2013) Halogen bonding and other sigma-hole interactions: a perspective. Phys Chem Chem Phys 15(27):11178–11189. doi:10.1039/c3cp00054kCrossRefGoogle Scholar
  23. 23.
    Wang WZ, Wong NB, Zheng WX, Tian AM (2004) Theoretical study on the blueshifting halogen bond. J Phys Chem A 108(10):1799–1805. doi:10.1021/jp036769qCrossRefGoogle Scholar
  24. 24.
    Murray JS, Concha MC, Lane P, Hobza P, Politzer P (2008) Blue shifts vs red shifts in sigma-hole bonding. J Mol Model 14(8):699–704. doi:10.1007/s00894-008-0307-yCrossRefGoogle Scholar
  25. 25.
    Brinck T, Murray JS, Politzer P (1992) Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions. Int J Quantum Chem 57–64Google Scholar
  26. 26.
    Murray JS, Paulsen K, Politzer P (1994) Molecular-surface electrostatic potentials in the analysis of non-hydrogen-bonding noncovalent interactions. Proc Indian Acad Sci-Chem Sci 106(2):267–275Google Scholar
  27. 27.
    Murray JS, Politzer P (1998) Statistical analysis of the molecular surface electrostatic potential: an approach to describing noncovalent interactions in condensed phases. Theochem-J Mol Struct 425(1–2):107–114CrossRefGoogle Scholar
  28. 28.
    Politzer P, Murray JS (2002) The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Acc 108(3):134–142. doi:10.1007/s00214-002-0363-9CrossRefGoogle Scholar
  29. 29.
    Murray JS, Politzer P (2011) The electrostatic potential: an overview. Wiley Interdiscip Rev-Comput Mol Sci 1(2):153–163. doi:10.1002/wcms.19CrossRefGoogle Scholar
  30. 30.
    Riley KE, Murray JS, Fanfrlik J, Rezac J, Sola RJ, Concha MC, Ramos FM, Politzer P (2011) Halogen bond tunability i: the effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine, and iodine. J Mol Model 17(12):3309–3318. doi:10.1007/s00894-011-1015-6CrossRefGoogle Scholar
  31. 31.
    Bundhun A, Ramasami P, Murray JS, Politzer P (2013) Trends in sigma-hole strengths and interactions of f3mx molecules (m = c, si, ge and x = f, cl, br, i). J Mol Model 19(7):2739–2746. doi:10.1007/s00894-012-1571-4CrossRefGoogle Scholar
  32. 32.
    Murray-Rust P, Motherwell WDS (1979) Computer retrieval and analysis of molecular geometry. 4. Intermolecular interactions. J Am Chem Soc 101(15):4374–4376CrossRefGoogle Scholar
  33. 33.
    Hassel O, Hvoslef J (1954) The structure of bromine 1, 4-dioxanate. Acta Chem Scand 8(5):873–873CrossRefGoogle Scholar
  34. 34.
    Zhou P-P, Qiu W-Y, Liu S, Jin N-Z (2011) Halogen as halogen-bonding donor and hydrogen-bonding acceptor simultaneously in ring-shaped h3n·x(y)·hf (x = cl, br and y = f, cl, br) complexes. Phys Chem Chem Phys 13(16):7408–7418. doi:10.1039/c1cp00025jCrossRefGoogle Scholar
  35. 35.
    McDowell SAC, Joseph JA (2012) Communication: an unusual halogen-bonding motif: the libr…brf dimer as a model system. J Chem Phys 137(17). doi:10.1063/1.4766932Google Scholar
  36. 36.
    Bilewicz E, Rybarczyk-Pirek AJ, Dubis AT, Grabowski SJ (2007) Halogen bonding in crystal structure of 1-methylpyrrol-2-yl trichloromethyl ketone. J Mol Struct 829(1–3):208–211. doi:10.1016/j.molstruc.2006.06.032CrossRefGoogle Scholar
  37. 37.
    Politzer P, Murray JS, Concha MC (2007) Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors. J Mol Model 13(6–7):643–650. doi:10.1007/s00894-007-0176-9CrossRefGoogle Scholar
  38. 38.
    Price SL, Stone AJ, Lucas J, Rowland RS, Thornley AE (1994) The nature of -cl…Cl- intermolecular interactions. J Am Chem Soc 116(11):4910–4918. doi:10.1021/ja00090a041CrossRefGoogle Scholar
  39. 39.
    Voth AR, Hays FA, Ho PS (2007) Directing macromolecular conformation through halogen bonds. Proc Natl Acad Sci U S A 104(15):6188–6193. doi:10.1073/pnas.0610531104Google Scholar
  40. 40.
    Lu Y, Shi T, Wang Y, Yang H, Yan X, Luo X, Jiang H, Zhu W (2009) Halogen bonding-a novel interaction for rational drug design? J Med Chem 52(9):2854–2862. doi:10.1021/jm9000133CrossRefGoogle Scholar
  41. 41.
    Voth AR, Khuu P, Oishi K, Ho PS (2009) Halogen bonds as orthogonal molecular interactions to hydrogen bonds. Nat Chem 1(1):74–79. doi:10.1038/nchem.112CrossRefGoogle Scholar
  42. 42.
    Hardegger LA, Kuhn B, Spinnler B, Anselm L, Ecabert R, Stihle M, Gsell B, Thoma R, Diez J, Benz J, Plancher J-M, Hartmann G, Banner DW, Haap W, Diederich F (2011) Systematic investigation of halogen bonding in protein-ligand interactions. Angew Chem-Int Ed 50(1):314–318. doi:10.1002/anie.201006781CrossRefGoogle Scholar
  43. 43.
    Imakubo T, Sawa H, Kato R (1995) Novel radical-cation salts of organic pi-donors containing iodine atom(s)—the first application of strong intermolecular -i-x- (x = cn, halogen atom) interaction to molecular conductors. Synth Met 73(2):117–122. doi:10.1016/0379-6779(95)03322-xCrossRefGoogle Scholar
  44. 44.
    Amico V, Meille SV, Corradi E, Mesina MT, Resnati G (1998) Perfluorocarbon–hydrocarbon self-assembling. 1d infinite chain formation driven by nitrogen…iodine interactions. J Am Chem Soc 120(32):8261–8262. doi:10.1021/ja9810686CrossRefGoogle Scholar
  45. 45.
    Iwaoka M, Takemoto S, Tomoda S (2002) Statistical and theoretical investigations on the directionality of nonbonded (so)-o-… Interactions. Implications for molecular design and protein engineering. J Am Chem Soc 124(35):10613–10620. doi:10.1021/ja026472qCrossRefGoogle Scholar
  46. 46.
    Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc Chem Res 38(5):386–395. doi:10.1021/ar0400995CrossRefGoogle Scholar
  47. 47.
    Saha BK, Nangia A, Jaskolski M (2005) Crystal engineering with hydrogen bonds and halogen bonds. Crystengcomm 7:355–358. doi:10.1039/b501693bCrossRefGoogle Scholar
  48. 48.
    Syssa-Magale JL, Boubekeur K, Schollhorn B (2005) First molecular self-assembly of 1,4-diiodo-tetrafluoro-benzene and a ketone via (o…) non-covalent halogen bonds. J Mol Struct 737(2–3):103–107. doi:10.1016/j.molstruc.2004.10.008CrossRefGoogle Scholar
  49. 49.
    Lucassen ACB, Karton A, Leitus G, Shimon LJW, Martin JML, van der Boom ME (2007) Co-crystallization of sym-triiodo-trifluorobenzene with bipyridyl donors: consistent formation of two instead of anticipated three n…i halogen bonds. Cryst Growth Des 7(2):386–392. doi:10.1021/cg0607250CrossRefGoogle Scholar
  50. 50.
    Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Halogen bonding in supramolecular chemistry. Angew Chem-Int Ed 47(33):6114–6127. doi:10.1002/anie.200800128CrossRefGoogle Scholar
  51. 51.
    Rissanen K (2008) Halogen bonded supramolecular complexes and networks. Crystengcomm 10(9):1107–1113. doi:10.1039/b803329nCrossRefGoogle Scholar
  52. 52.
    Moilanen J, Ganesamoorthy C, Balakrishna MS, Tuononen HM (2009) Weak interactions between trivalent pnictogen centers: computational analysis of bonding in dimers x3e…ex3 (e = pnictogen, x = halogen). Inorg Chem 48(14):6740–6747. doi:10.1021/ic900635fCrossRefGoogle Scholar
  53. 53.
    Kollman PA, Liebman JF, Allen LC (1970) Lithium bond. J Am Chem Soc 92(5):1142–1150CrossRefGoogle Scholar
  54. 54.
    Ault BS, Pimentel GC (1975) Matrix isolation infrared studies of lithium bonding. J Phys Chem 79(6):621–626CrossRefGoogle Scholar
  55. 55.
    Sannigrahi A, Kar T, Niyogi BG, Hobza P, Schleyer PvR (1990) The lithium bond reexamined. Chem Rev 90(6):1061–1076CrossRefGoogle Scholar
  56. 56.
    Ammal SSC, Venuvanalingam P (1998) Ab initio and dft investigations of lithium/hydrogen bonded complexes of trimethylamine, dimethyl ether and dimethyl sulfide. J Chem Soc-Faraday Trans 94(18):2669–2674CrossRefGoogle Scholar
  57. 57.
    Vila A, Vila E, Mosquera RA (2006) Topological characterisation of intermolecular lithium bonding. Chem Phys 326(2–3):401–408. doi:10.1016/j.chemphys.2006.02.032CrossRefGoogle Scholar
  58. 58.
    Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, OxfordGoogle Scholar
  59. 59.
    Lipkowski P, Grabowski SJ (2014) Could the lithium bond be classified as the sigma-hole bond?—qtaim and nbo analysis. Chem Phys Lett 591:113–118. doi:10.1016/j.cplett.2013.11.017CrossRefGoogle Scholar
  60. 60.
    Feng Y, Liu L, Wang JT, Li XS, Guo QX (2004) Blue-shifted lithium bonds. Chem Commun (1):88–89. doi:10.1039/b310723jGoogle Scholar
  61. 61.
    Li QZ, Wang YF, Li WZ, Cheng JB, Gong BA, Sun JZ (2009) Prediction and characterization of the hmghlix (x = h, oh, f, cch, cn, and nc) complexes: a lithium–hydride lithium bond. Phys Chem Chem Phys 11(14):2402–2407. doi:10.1039/b820309aCrossRefGoogle Scholar
  62. 62.
    McDowell SAC, St Hill JAS (2011) A theoretical study of hydrogen- and lithium-bonded complexes of f-h/li and cl-h/li with nf3, nh3, and nh2(ch3). J Chem Phys 135(16). doi:10.1063/1.3653476Google Scholar
  63. 63.
    Yanez M, Sanz P, Mo O, Alkorta I, Elguero J (2009) Beryllium bonds, do they exist? J Chem Theory Comput 5(10):2763–2771. doi:10.1021/ct900364yCrossRefGoogle Scholar
  64. 64.
    Eskandari K (2012) Characteristics of beryllium bonds; a qtaim study. J Mol Model 18(8):3481–3487. doi:10.1007/s00894-012-1360-0CrossRefGoogle Scholar
  65. 65.
    Yanez M, Mo O, Alkorta I, Elguero J (2013) Can conventional bases and unsaturated hydrocarbons be converted into gas-phase superacids that are stronger than most of the known oxyacids? The role of beryllium bonds. Chem-a Eur J 19(35):11637–11643. doi:10.1002/chem.201300808CrossRefGoogle Scholar
  66. 66.
    Suhai S (1994) Cooperative effects in hydrogen-bonding—4th-order many-body perturbation-theory studies of water oligomers and of an infinite water chain as a model for ice. J Chem Phys 101(11):9766–9782. doi:10.1063/1.467942CrossRefGoogle Scholar
  67. 67.
    Tsuzuki S, Houjou H, Nagawa Y, Goto M, Hiratani K (2001) Cooperative enhancement of water binding to crownophane by multiple hydrogen bonds: analysis by high level ab initio calculations. J Am Chem Soc 123(18):4255–4258. doi:10.1021/ja0037264CrossRefGoogle Scholar
  68. 68.
    Szczesna B, Urbanczyk-Lipkowska Z (2002) Cooperative effect of multiple hydrogen bonding involving the nitro group: Solid state dimeric self-assembly of o-, m- and p-hydroxyphenyl-2,4-dinitrophenylhydrazones. New J Chem 26(2):243–249. doi:10.1039/b105498hCrossRefGoogle Scholar
  69. 69.
    Thallapally PK, Katz AK, Carrell HL, Desiraju GR (2002) Unusually long cooperative chain of seven hydrogen bonds. An alternative packing type for symmetrical phenols. Chem Commun (4):344–345. doi:10.1039/b110036jGoogle Scholar
  70. 70.
    Parra RD, Bulusu S, Zeng XC (2003) Cooperative effects in one-dimensional chains of three-center hydrogen bonding interactions. J Chem Phys 118(8):3499–3509. doi:10.1063/1.1535441CrossRefGoogle Scholar
  71. 71.
    Araujo RCMU, Soares VM, Oliveira BG, Lopes KC, Ventura E, Do Monte SA, Santana OL, Carvalho AB, Ramos MN (2006) Theoretical study of cooperative effects in the homo- and heteromeric hydrogen bond chains (hcn)(n)-hf with n = 1, 2, and 3. Int J Quantum Chem 106(13):2714–2722. doi:10.1002/qua.21132CrossRefGoogle Scholar
  72. 72.
    Larsen RW, Suhm MA (2006) Cooperative organic hydrogen bonds: the librational modes of cyclic methanol clusters. J Chem Phys 125(15). doi:10.1063/1.2358349Google Scholar
  73. 73.
    Song H-J, Xiao H-M, Dong H-S (2006) Cooperative effects, strengths of hydrogen bonds, and intermolecular interactions in circular cis, trans-cyclotriazane clusters (n = 3-8). J Chem Phys 125(7). doi:10.1063/1.2336209Google Scholar
  74. 74.
    Znamenskiy VS, Green ME (2007) Quantum calculations on hydrogen bonds in certain water clusters show cooperative effects. J Chem Theory Comput 3(1):103–114. doi:10.1021/ct600139dCrossRefGoogle Scholar
  75. 75.
    Fradelos G, Kaminski JW, Wesolowski TA, Leutwyler S (2009) Cooperative effect of hydrogen-bonded chains in the environment of pi → pi* chromophore. J Phys Chem A 113(36):9766–9771. doi:10.1021/jp906483zCrossRefGoogle Scholar
  76. 76.
    Rodziewicz P, Rutkowski KS, Melikova SM, Koll A (2009) Cooperative effects in blue-shifted hydrogen bonded cluster of cf3h…Hf)(1 < = n < = 3) from first principles simulations. Chem Phys 361 (3):129–136. doi:10.1016/j.chemphys.2009.05.017CrossRefGoogle Scholar
  77. 77.
    Roztoczynska A, Kozlowska J, Lipkowski P, Bartkowiak W (2014) Does the spatial confinement influence the electric properties and cooperative effects of the hydrogen bonded systems? Hcn chains as a case study. Chem Phys Lett 608:264–268. doi:10.1016/j.cplett.2014.05.102CrossRefGoogle Scholar
  78. 78.
    Planas JG, Vinas C, Teixidor F, Comas-Vives A, Ujaque G, Lledos A, Light ME, Hursthouse MB (2005) Self-assembly of mercaptane–metallacarborane complexes by an unconventional cooperative effect: a c–h…s–h…h–b hydrogen/dihydrogen bond interaction. J Am Chem Soc 127(45):15976–15982. doi:10.1021/ja055210wCrossRefGoogle Scholar
  79. 79.
    Li Q-Z, Hu T, An X-L, Gong B-A, Cheng J-B (2008) Cooperativity between the dihydrogen bond and the n⋅⋅⋅hc hydrogen bond in lih–(hcn)n complexes. Chemphyschem 9(13):1942–1946. doi:10.1002/cphc.200800320CrossRefGoogle Scholar
  80. 80.
    Solimannejad M, Rabbani M, Ahmadi A, Esrafili MD (2014) Cooperative and diminutive interplay between the sodium bonding with hydrogen and dihydrogen bondings in ternary complexes of nac3n with hmgh and hcn (hnc). Mol Phys 112(15):2017–2022. doi:10.1080/00268976.2013.879496CrossRefGoogle Scholar
  81. 81.
    Lankau T, Wu Y-C, Zou J-W, Yu C-H (2008) The cooperativity between hydrogen and halogen bonds. J Theor Comput Chem 7(1):13–35. doi:10.1142/s0219633608003563CrossRefGoogle Scholar
  82. 82.
    Li Q, Lin Q, Li W, Cheng J, Gong B, Suo J (2008) Cooperativity between the halogen bond and the hydrogen bond in h3n⋅⋅⋅xy⋅⋅⋅hf complexes (x, y = f, cl, br). Chemphyschem 9(15):2265–2269. doi:10.1002/cphc.200800467CrossRefGoogle Scholar
  83. 83.
    Jing B, Li Q, Li R, Gong B, Liu Z, Li W, Cheng J, Sun J (2011) Competition and cooperativity between hydrogen bond and halogen bond in hnc⋅⋅⋅(hobr)n and (hnc)n⋅⋅⋅hobr (n = 1 and 2) systems. Comput Theor Chem 963(2–3):417–421. doi:10.1016/j.comptc.2010.11.006CrossRefGoogle Scholar
  84. 84.
    Solimannejad M, Malekani M, Alkorta I (2011) Cooperativity between the hydrogen bonding and halogen bonding in f3cx … nch(cnh) … nch(cnh) complexes (x = cl, br). Mol Phys 109(13):1641–1648. doi:10.1080/00268976.2011.582050CrossRefGoogle Scholar
  85. 85.
    Zhao Q, Feng D, Hao J (2011) The cooperativity between hydrogen and halogen bond in the xy…hnc…xy (x, y = f, cl, br) complexes. J Mol Model 17(11):2817–2823. doi:10.1007/s00894-011-0974-yCrossRefGoogle Scholar
  86. 86.
    Li Q, Li R, Zhou Z, Li W, Cheng J (2012) S…x halogen bonds and h…x hydrogen bonds in h2cs–xy (xy = ff, clf, clcl, brf, brcl, and brbr) complexes: cooperativity and solvent effect. J Chem Phys 136(1). doi:10.1063/1.3673540Google Scholar
  87. 87.
    Solimannejad M, Malekani M (2012) Cooperative and diminutive interplay between the hydrogen bonding and halogen bonding in ternary complexes of hccx (x = cl, br) with hcn and hnc. Comput Theor Chem 998:34–38. doi:10.1016/j.comptc.2012.05.021CrossRefGoogle Scholar
  88. 88.
    Grabowski SJ (2013) Cooperativity of hydrogen and halogen bond interactions. Theor Chem Acc 132(4). doi:10.1007/s00214-013-1347-7Google Scholar
  89. 89.
    Alkorta I, Blanco F, Deya PM, Elguero J, Estarellas C, Frontera A, Quinonero D (2010) Cooperativity in multiple unusual weak bonds. Theor Chem Acc 126(1–2):1–14. doi:10.1007/s00214-009-0690-1CrossRefGoogle Scholar
  90. 90.
    McDowell SAC, Joseph JA (2012) Cooperative effects of noncovalent bonds to the br atom of halogen-bonded h3n…brz and hcn…brz (z = f, br) complexes. J Chem Phys 137(7). doi:10.1063/1.4745838Google Scholar
  91. 91.
    Zhao XR, Wu YJ, Han J, Shen QJ, Jin WJ (2013) Theoretical study of the triangular bonding complex formed by carbon tetrabromide, a halide, and a solvent molecule in the gas phase. J Mol Model 19(1):299–304. doi:10.1007/s00894-012-1518-9CrossRefGoogle Scholar
  92. 92.
    Li Q, Hu T, An X, Li W, Cheng J, Gong B, Sun J (2009) Theoretical study of the interplay between lithium bond and hydrogen bond in complexes involved with hli and hcn. Chemphyschem 10(18):3310–3315. doi:10.1002/cphc.200900549CrossRefGoogle Scholar
  93. 93.
    McDowell SAC, Yarde HK (2012) Cooperative effects of hydrogen, lithium and halogen bonding on f–h/lioh2 complexes. Phys Chem Chem Phys 14(19):6883–6888. doi:10.1039/c2cp40203cCrossRefGoogle Scholar
  94. 94.
    Solimannejad M, Rezaei Z, Esrafili MD (2013) Competition and interplay between the lithium bonding and hydrogen bonding: R3c center dot center dot center dot hy center dot center dot center dot liy and r3c center dot center dot center dot liy center dot center dot center dot hy triads as a working model (r = h, ch3; y = cn, nc). J Mol Model 19(11):5031–5035. doi:10.1007/s00894-013-2006-6CrossRefGoogle Scholar
  95. 95.
    Solimannejad M (2012) Cooperative and diminutive interplay between lithium and dihydrogen bonding in f3yli center dot center dot center dot nch center dot center dot center dot center dot hmh and f3yli center dot center dot center dot hmh center dot center dot center dot hcn triads (y = c, si; m = be, mg). Chemphyschem 13(13):3158–3162. doi:10.1002/cphc.201200333CrossRefGoogle Scholar
  96. 96.
    McDowell SAC, Joseph JA (2013) Cooperative effects in novel lif/hf⋅⋅⋅lif⋅⋅⋅xf (x = f, cl, br) clusters. J Chem Phys 138(16). doi:10.1063/1.4801863Google Scholar
  97. 97.
    Li Q, Li R, Liu Z, Li W, Cheng J (2011) Interplay between halogen bond and lithium bond in mcn-licn-xcch (m = h, li, and na; x = cl, br, and i) complex: The enhancement of halogen bond by a lithium bond. J Comput Chem 32(15):3296–3303. doi:10.1002/jcc.21916CrossRefGoogle Scholar
  98. 98.
    Esrafili MD, Esmailpour P, Mohammadian-Sabet F, Solimannejad M (2013) Theoretical study of the interplay between halogen bond and lithium-pi interactions: cooperative and diminutive effects. Chem Phys Lett 588:47–50. doi:10.1016/j.cplett.2013.10.009CrossRefGoogle Scholar
  99. 99.
    Esrafili MD, Mohammadian-Sabet F, Solimannejad M (2014) A theoretical evidence for mutual influence between s…n(c) and hydrogen/lithium/halogen bonds: Competition and interplay between π-hole and σ-hole interactions. Struct Chem 25(4):1197–1205. doi:10.1007/s11224-014-0392-8CrossRefGoogle Scholar
  100. 100.
    Solimannejad M, Bayati E, Esrafili MD (2014) Enhancement effect of lithium bonding on the strength of pnicogen bonds: Xh2p…ncli…ncy as a working model (x = f, cl; y = h, f, cl, cn). Mol Phys 112(15):2058–2062. doi:10.1080/00268976.2014.884250CrossRefGoogle Scholar
  101. 101.
    Li Q, Li R, Liu X, Cheng J, Li W (2012) Ab initio study of synergetic effects of two strong interactions of cation–π interaction and lithium bond in m+…phenyl lithium… n (m = li, na, k; n = h2o and nh3) complex. Mol Phys 110(8):457–465. doi:10.1080/00268976.2012.655793CrossRefGoogle Scholar
  102. 102.
    Esrafili MD, Fatehi P, Solimannejad M (2013) Cooperative effects in cyclic licn and hcn clusters: a comparative study. Comput Theor Chem 1022:115–120. doi:10.1016/j.comptc.2013.08.011Google Scholar
  103. 103.
    Solimannejad M, Ghafari S, Esrafili MD (2013) Theoretical insight into cooperativity in lithium-bonded complexes: linear clusters of licn and linc. Chem Phys Lett 577:6–10. doi:10.1016/j.cplett.2013.05.023CrossRefGoogle Scholar
  104. 104.
    Esrafili MD, Esmailpour P, Mohammadian-Sabet F, Solimannejad M (2014) Substituent effects on cooperativity between lithium bonds. Int J Quantum Chem 114(4):295–301. doi:10.1002/qua.24560CrossRefGoogle Scholar
  105. 105.
    Albrecht L, Boyd RJ, Mo O, Yanez M (2014) Changing weak halogen bonds into strong ones through cooperativity with beryllium bonds. J Phys Chem A 118(23):4205–4213. doi:10.1021/jp503229uCrossRefGoogle Scholar
  106. 106.
    Albrecht L, Boyd RJ, Mo O, Yanez M (2012) Cooperativity between hydrogen bonds and beryllium bonds in (h2o)(n)bex2 (n = 1-3, x = h, f) complexes. A new perspective. Phys Chem Chem Phys 14(42):14540–14547. doi:10.1039/c2cp42534cCrossRefGoogle Scholar
  107. 107.
    Mo O, Yanez M, Alkorta I, Elguero J (2012) Modulating the strength of hydrogen bonds through beryllium bonds. J Chem Theory Comput 8(7):2293–2300. doi:10.1021/ct300243bCrossRefGoogle Scholar
  108. 108.
    Hill JG (2014) The halogen bond in thiirane… Clf: an example of a mulliken inner complex. Phys Chem Chem Phys 16(36):19137–19140. doi:10.1039/c4cp03412kCrossRefGoogle Scholar
  109. 109.
    Mulliken RS, Person WB (1969) Molecular complexes: a lecture and reprint volume. Wiley-Interscience, New YorkGoogle Scholar
  110. 110.
    Legon AC (1999) Prereactive complexes of dihalogens xy with lewis bases b in the gas phase: a systematic case for the halogen analogue b—xy of the hydrogen bond b—hx. Angew Chem-Int Ed 38(18):2687–2714CrossRefGoogle Scholar
  111. 111.
    Evans CM, Holloway JH, Legon AC (1996) Nature and angular geometry of the pre-reactive complex thiirane-chlorine monofluoride from its rotational spectrum. Chem Phys Lett 255(1–3):119–128. doi:10.1016/0009-2614(96)00340-5CrossRefGoogle Scholar
  112. 112.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926CrossRefGoogle Scholar
  113. 113.
    Jeziorski B, Moszynski R, Szalewicz K (1994) Perturbation-theory approach to intermolecular potential-energy surfaces of van-der-waals complexes. Chem Rev 94(7):1887–1930. doi:10.1021/cr00031a008CrossRefGoogle Scholar
  114. 114.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision b.05. Gaussian, Inc., PittsburghGoogle Scholar
  115. 115.
    Arman HD, Gieseking RL, Hanks TW, Pennington WT (2010) Complementary halogen and hydrogen bonding: sulfur center dot center dot center dot iodine interactions and thioamide ribbons. Chem Commun 46(11):1854–1856. doi:10.1039/b925710aCrossRefGoogle Scholar
  116. 116.
    Li QZ, Jing B, Li R, Liu ZB, Li WZ, Luan F, Cheng JB, Gong BA, Sun JZ (2011) Some measures for making halogen bonds stronger than hydrogen bonds in h2cs-hox (x = f, cl, and br) complexes. Phys Chem Chem Phys 13(6):2266–2271. doi:10.1039/c0cp01543aCrossRefGoogle Scholar
  117. 117.
    Emsley J (1998) The elements, 3rd edn. Clarendon Press, OxfordGoogle Scholar
  118. 118.
    Keith TA (2012) Aimall (version 12.11.09). TK Gristmill Software, Overland ParkGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Biological and Chemical SciencesThe University of the West IndiesWansteadBarbados

Personalised recommendations