Structures Related to the Emplacement of Shallow-Level Intrusions

  • David Westerman
  • Sergio Rocchi
  • Christoph Breitkreuz
  • Carl Stevenson
  • Penelope Wilson
Chapter
Part of the Advances in Volcanology book series (VOLCAN)

Abstract

A systematic view of the vast nomenclature used to describe the structures of shallow-level intrusions is presented here. Structures are organised in four main groups, according to logical breaks in the timing of magma emplacement, independent of the scales of features: (1) Intrusion-related structures, formed as the magma is making space and then develops into its intrusion shape; (2) Magmatic flow-related structures, developed as magma moves with suspended crystals that are free to rotate; (3) Solid-state, flow-related structures that formed in portions of the intrusions affected by continuing flow of nearby magma, therefore considered to have a syn-magmatic, non-tectonic origin; (4) Thermal and fragmental structures, related to creation of space and impact on host materials. This scheme appears as a rational organisation, helpful in describing and interpreting the large variety of structures observed in shallow-level intrusions.

Keywords

Magma intrusion Magma flow Syn-magmatic deformation Fragmentation Geo-logic 

Notes

Acknowledgements

This work has been partially funded by Università di Pisa, grant PRA_2016_33 to SR.

References

  1. Aarnes I, Svensen H, Connolly JAD, Podladchikov YY (2010) How contact metamorphism can trigger global climate changes: modeling gas generation around igneous sills in sedimentary basins. Geochim Cosmochim Acta 74(24):7179–7195CrossRefGoogle Scholar
  2. Adamovic J (2006) Thermal effects of magma emplacement and the origin of columnar jointing in host sandstone. Vis Geosci 72–74Google Scholar
  3. Aguirre-Díaz GJ, Labarthe-Hernández G (2003) Fissure ignimbrites: fissure-source origin for voluminous ignimbrites of the Sierra Madre Occidental and its relationship with Basin and Range faulting. Geology 31:773–776CrossRefGoogle Scholar
  4. Almond DC (1971) Ignimbrite vents in the Sabaloka cauldron. Sudan Geol Mag 108:159–176CrossRefGoogle Scholar
  5. Anderson EM (1938) The dynamics of sheet intrusion. Proc R Soc Edinb 58:242–251CrossRefGoogle Scholar
  6. Archanjo CJ, Launeau P, Bouchez J-L (1995) Magnetic fabric vs. magnetite and biotite shape fabrics of the magnetite-bearing granite pluton of Gameleiras (Northeast Brazil). Phys Earth Planet Inter 89:63–75CrossRefGoogle Scholar
  7. Awdankiewicz M, Breitkreuz C, Ehling B-C (2004) Emplacement textures in Late Palaeozoic andesite sills of the Flechtingen-Roßlau Block, north of Magdeburg (Germany). In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems, vol 234. Geological Society, London, Special Publication, pp 51–66CrossRefGoogle Scholar
  8. Baer G, Reches Z (1987) Flow patterns of magma in dikes, Makhtesh Ramon, Israel. Geology 15(6):569–572CrossRefGoogle Scholar
  9. Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc R Soc Lond A225:49–63CrossRefGoogle Scholar
  10. Barbarin B (2005) Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 80(1–4):155–177CrossRefGoogle Scholar
  11. Bédard JHJ, Marsh BD, Hersum TG, Naslund HR, Mukasa SB (2007) Large-scale mechanical redistribution of orthopyroxene and plagioclase in the Basement Sill, Ferrar Dolerites, McMurdo Dry Valleys, Antarctica: petrological, mineral-chemical and field evidence for channelized movement of crystals and melt. J Petrol 48(12):2289–2326CrossRefGoogle Scholar
  12. Bermúdez A, Delpino D (2008) Concentric and radial joint systems within basic sills and their associated porosity enhancement, Neuquén Basin, Argentina. In: Thomson K, Petford N (eds) Structure and emplacement of high-level magmatic systems, vol 302. Geological Society, London, Special Publications, pp 185–198CrossRefGoogle Scholar
  13. Blanchard J-P, Boyer P, Gagny C (1977) Un nouveau critère de sens de mise an place dans une caisse filonienne: le “pincement” des mineraux aux épontes. Tectonophys. 53:1–25CrossRefGoogle Scholar
  14. Blumenfeld P, Bouchez J-L (1988) Shear criteria in granite and migmatite deformed in the magmatic and solid states. J Struct Geol 10(4):361–372CrossRefGoogle Scholar
  15. Bons PD, Druguet E, Hamann I, Carreras J, Passchier CW (2004) Apparent boudinage in dykes. J Struct Geol 26(4):625–636CrossRefGoogle Scholar
  16. Borradaile G (1987) Anisotropy of magnetic susceptibility: rock composition versus strain. Tectonophys. 138:327–329CrossRefGoogle Scholar
  17. Borradaile GJ (1988) Magnetic susceptibility, petrofabrics and strain. Tectonophys. 156:1–20CrossRefGoogle Scholar
  18. Borradaile GJ (1991) Correlation of strain with anisotropy of magnetic susceptibility (AMS). Pure appl Geophys 135:15–29CrossRefGoogle Scholar
  19. Borradaile GJ (2001) Magnetic fabrics and petrofabrics: their orientation distributions and anisotropies. J Struct Geol 23:1581–1596CrossRefGoogle Scholar
  20. Borradaile GJ, Henry B (1997) Tectonic applications of magnetic susceptibility and its anisotropy. Earth Sci Rev 42(1):49–93CrossRefGoogle Scholar
  21. Borradaile GJ, Jackson M (2004) Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks. In: Martín-Hernández F, Lüneburg CM, Aubourg C, Jackson M (eds) Magnetic fabric: methods and applications, vol 238. Geological Society, London, Special Publications, pp 299–360CrossRefGoogle Scholar
  22. Bouchez J-L (1997) Granite is never isotropic: an introduction to AMS studies of granitic rocks. In: Bouchez J-L, Hutton DHW, Stephens WE (eds) Granites: from segregation of melts to emplacement fabrics. Kluwer, Dordrecht, pp 95–112CrossRefGoogle Scholar
  23. Breitkreuz C (2013) Spherulites and lithophysae—200 years of investigation on high-temperature crystallization domains in silica-rich volcanic rocks. Bull Volc 75(4):1–16Google Scholar
  24. Breitkreuz C, Petford N (eds) (2004) Physical Geology of High-Level Magmatic Systems. In: Geological Society, London, Special Publication, vol 234, p 253Google Scholar
  25. Bunger AP, Cruden AR (2011) Modeling the growth of laccoliths and large mafic sills: role of magma body forces. J Geophys Res 116(B2):B02203CrossRefGoogle Scholar
  26. Busby-Spera CJ, White JDL (1987) Variation in peperite textures associated with differing host-sediment properties. Bull Volc 49:765–775CrossRefGoogle Scholar
  27. Cnudde V, Boone MN (2013) High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth Sci Rev 123:1–17CrossRefGoogle Scholar
  28. Cnudde V, Masschaele B, Dierick M, Vlassenbroeck J, Van Hoorebeke L, Jacobs P (2006) Recent progress in X-ray CT as a geosciences tool. Appl Geochem 21:826–832CrossRefGoogle Scholar
  29. Correa-Gomes LC, Souza Filho CR, Martins CJFN, Oliveira EP (2001) Development of symmetrical and asymmetrical fabrics in sheet-like igneous bodies: the role of magma flow and wall-rock displacements in theoretical and natural cases. J Struct Geol 23(9):1415–1428CrossRefGoogle Scholar
  30. Corry CE (1988) Laccoliths—mechanics of emplacement and growth. Geol Soc Am Spec Pap 220:110Google Scholar
  31. Cruden AR, McCaffrey KJW (2001) Growth of plutons by floor subsidence: implications for rates of emplacement, intrusion spacing and melt-extraction mechanisms. Phys Chem Earth 26:303–315CrossRefGoogle Scholar
  32. Cruden A, McCaffrey K (2002) Different scaling laws for sills, laccoliths and plutons: mechanical thresholds on roof lifting and floor depression. In: Breitkreuz C, Mock A, Petford N (eds) Physical geology of subvolcanic systems—Laccolith, Sills and Dykes (LASI). Freiberg, 12–14 October 2002, pp 15–17Google Scholar
  33. de Saint-Blanquat M, Habert G, Horsman E, Morgan SS, Tikoff B, Launeau P, Gleizes G (2006) Mechanisms and duration of non-tectonically assisted magma emplacement in the upper crust: the Black Mesa pluton, Henry Mountains, Utah. Tectonophysics 428:1–31CrossRefGoogle Scholar
  34. Dini A, Corretti A, Innocenti F, Rocchi S, Westerman DS (2007) Sooty sweat stains or tourmaline spots? The Argonauts on the Island of Elba (Tuscany) and the spread of Greek trading in the Mediterranean Sea. In: Piccardi L, Masse WB (eds) Myth and geology, vol 273. Geological Society, Special Publications, London, pp 227–243CrossRefGoogle Scholar
  35. Dutrow BL, Travis BJ, Gable CW, Henry DJ (2001) Coupled heat and silica transport associated with dike intrusion into sedimentary rock: effects on isotherm location and permeability evolution. Geochim Cosmochim Acta 65:3749–3767CrossRefGoogle Scholar
  36. Eide CH, Schofield N, Jerram DA, Howell JA (2017) Basin-scale architecture of deeply emplaced sill complexes: Jameson Land, East Greenland. J Geol Soc 174(1):23–40CrossRefGoogle Scholar
  37. Ekren EB, Byers FM (1976) Ash-flow fissure vent in west-central Nevada. Geology 4(4):247–251CrossRefGoogle Scholar
  38. Eriksson PI, Riishuus MS, Sigmundsson F, Elming SÅ (2011) Magma flow directions inferred from field evidence and magnetic fabric studies of the Streitishvarf composite dike in east Iceland. J Volcanol Geoth Res 206(1–2):30–45CrossRefGoogle Scholar
  39. Farina F, Dini A, Innocenti F, Rocchi S, Westerman DS (2010) Rapid incremental assembly of the Monte Capanne pluton (Elba Island, Tuscany) by downward stacking of magma sheets. Geol Soc Am Bull 122(9/10):1463–1479CrossRefGoogle Scholar
  40. Fernandez A, Laporte D (1991) Significance of low symmetry fabrics in magmatic rocks. J Struct Geol 13:337–347CrossRefGoogle Scholar
  41. Flinn D (1962) On folding during three-dimensional progressive deformation. Quarterly. Quaterly J Geol Soc 118(1–4):385–428CrossRefGoogle Scholar
  42. Gilbert GK (1877) Report on the geology of Henry Mountains. In: Department of the Interior, U.S. Geographical and Geological Survey of the Rocky Mountain Region. Washington D.C. Government Printing Office, p 160Google Scholar
  43. Graham JW (1954) Magnetic susceptibility anisotropy, an unexploited petrofabric element. Geol Soc Am Bull 65:1257–1258Google Scholar
  44. Grégoire V, Darrozes J, Gaillot P, Nédélec A, Launeau P (1998) Magnetite grain shape fabric and distribution anisotropy vs. rock magnetic fabric: A three-dimensional case study. J Struct Geol 20(7):937–944CrossRefGoogle Scholar
  45. Habert G, de Saint-Blanquat M (2004) Rate of construction of the Black Mesa bysmalith, Henry Mountains, Utah. In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems, vol 234. Geological Society, London, Special Publication, pp 163–173CrossRefGoogle Scholar
  46. Halls H, Fahrig W (1987) Mafic dyke swarms: a collection of papers based on the proceedings of an international conference on mafic dyke swarms held at Erindale College, University of Toronto, Ontario, Canada, 4–7 June 1985. Geological Association of CanadaGoogle Scholar
  47. Horsman E, Tikoff B, Morgan S (2005) Emplacement-related fabric and multiple sheets in the Maiden Creek sill, Henry Mountains, Utah, USA. J Struct Geol 27:1426–1444CrossRefGoogle Scholar
  48. Horsman E, Morgan S, de Saint-Blanquat M, Habert G, Hunter R, Nugent A, Tikoff B (2009) Emplacement and assembly of shallow plutons through multiple magma pulses, Henry Mountains, Utah. Earth Environ Sci Trans R Soc Edinb 100:1–16Google Scholar
  49. Horsman E, Morgan S, de Saint-Blanquat M, Tikoff B (2010) Emplacement and assembly of shallow intrusions, Henry Mountains, Southern Utah. LASI V Conference, Field trip guidebookGoogle Scholar
  50. Hrouda F (1993) Theoretical models of magnetic anisotropy to strain relationship revisited. Phys Earth Planet Inter 77:237–249CrossRefGoogle Scholar
  51. Hunt CB (1953) Geology and geography of the Henry Mountains region, Utah. U.S. Geological Survey, Professional Paper 228, p 234Google Scholar
  52. Hutton DHW (2009) Insights into magmatism in volcanic margins: bridge structures and a new mechanism of basic sill emplacement—Theron Mountains, Antarctica. Petrol Geosci 15:269–278CrossRefGoogle Scholar
  53. Jackson MD, Pollard DD (1988) The laccolith-stock controversy: new results from the southern Henry Mountains, Utah. Geol Soc Am Bull 100:117–139CrossRefGoogle Scholar
  54. Jackson MD, Pollard DD (1990) Flexure and faulting of sedimentary host rocks during growth of igneous domes, Henry Mountains, Utah. J Struct Geol 12(2):185–206CrossRefGoogle Scholar
  55. Jamtveit B, Svensen H, Podladchikov YY, Planke S (2004) Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. In: Breitkreuz C, Petford N (eds) Physical Geology of High-Level Magmatic Systems. Geological Society, London, Special Publication, pp 229–232CrossRefGoogle Scholar
  56. Johnson A, Pollard DD (1973) Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah, I. Fields observations, Gilbert’s model, physical properties and flow of the magma. Tectonophys 18:261–309CrossRefGoogle Scholar
  57. Kano K, Matsuura H, Yamauchi S (1997) Miocene rhyolitic welded tuff infilling a funnel-shaped eruption conduit Shiotani, southeast of Matsue, SW Japan. Bull Volc 59(2):125–135CrossRefGoogle Scholar
  58. Kerr AD, Pollard DD (1998) Toward more realistic formulations for the analysis of laccoliths. J Struct Geol 20(12):1783–1793CrossRefGoogle Scholar
  59. Ketcham RA (2005) Three-dimensional grain fabric measurements using high-resolution X-ray computed tomography. J Struct Geol 27:1217–1228CrossRefGoogle Scholar
  60. Ketcham RA, Carlson WD (2001) Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput Geosci 27:381–400CrossRefGoogle Scholar
  61. Koch FG, Johnson AM, Pollard DD (1981) Monoclinal bending of strata over laccolithic intrusions. Tectonophys 74(3–4):T21–T31CrossRefGoogle Scholar
  62. Kratinová Z, Závada P, Hrouda F, Schulmann K (2006) Non-scaled analogue modelling of AMS development during viscous flow: a simulation on diapir-like structures. Tectonophys 418(1–2):51–61CrossRefGoogle Scholar
  63. Leuthold J, Müntener O, Baumgartner LP, Putlitz B, Ovtcharova M, Schaltegger U (2012) Time resolved construction of a bimodal laccolith (Torres del Paine, Patagonia). Earth Planet Sci Lett 325–326:85–92CrossRefGoogle Scholar
  64. Leuthold J, Müntener O, Baumgartner LP, Putlitz B, Chiaradia M (2013) A detailed geochemical study of a shallow arc-related Laccolith; the Torres del Paine Mafic Complex (Patagonia). J Petrol 54(2):273–303CrossRefGoogle Scholar
  65. Liss D, Hutton DHW, Owens WH (2002) Ropy flow structures: a neglected indicator of magma-flow direction in sills and dikes. Geology 30(8):715–718CrossRefGoogle Scholar
  66. Liss D, Owens WH, Hutton DHW (2004) New palaeomagnetic results from the Whin Sill complex: evidence for a multiple intrusion event and revised virtual geomagnetic poles for the late Carboniferous for the British Isles. J Geol Soc Lond 161:927–938CrossRefGoogle Scholar
  67. Magee C, Stevenson C, O’Driscoll B, Schofield N, McDermott K (2012) An alternative emplacement model for the classic Ardnamurchan cone sheet swarm, NW Scotland, involving lateral magma supply via regional dykes. J Struct Geol 43:73–91CrossRefGoogle Scholar
  68. Martin U, Nemeth K (2007) Blocky versus fluidal peperite textures developed in volcanic conduits, vents and crater lakes of phreatomagmatic volcanoes in Mio/Pliocene volcanic fields of Western Hungary. J Volcanol Geoth Res 159(1–3):164–178CrossRefGoogle Scholar
  69. Martín-Hernández F, Lüneburg CM, Aubourg C, Jackson M (2004) Magnetic fabric: methods and applications. In: Geological Society, London, Special Publications, vol 238, p 540Google Scholar
  70. McCaffrey KJW, Petford N (1997) Are granitic intrusions scale invariant? J Geol Soc Lond 154:1–4CrossRefGoogle Scholar
  71. Michel J, Baumgartner L, Putlitz B, Schaltegger U, Ovtcharova M (2008) Incremental growth of the Patagonian Torres del Paine laccolith over 90 k.y. Geology 36(6):459–462CrossRefGoogle Scholar
  72. Mock A, Jerram DA (2005) Crystal Size Distributions (CSD) in three dimensions: insights from the 3D reconstruction of a highly porphyritic rhyolite. J Petrol 46:1525–1541CrossRefGoogle Scholar
  73. Mock A, Jerram DA, Breitkreuz C (2003) Using quantitative textural analysis to understand the emplacement of shallow-level rhyolitic laccoliths—a case study from the Halle Volcanic Complex, Germany. J Petrol 44(5):833–849CrossRefGoogle Scholar
  74. Morgan S, Horsman E, Tikoff B, de Saint Blanquat M, Habert G (2005) Sheet-like emplacement of satellite laccoliths, sills, and bysmaliths of the Henry Mountains, Southern Utah. In: Field guide. Geological Society of America, pp 1–28CrossRefGoogle Scholar
  75. Morgan S, Stanik A, Horsman E, Tikoff B, de Saint Blanquat M, Habert G (2008) Emplacement of multiple magma sheets and wall rock deformation: Trachyte Mesa intrusion, Henry Mountains, Utah. J Struct Geol 30(4):491–512CrossRefGoogle Scholar
  76. O’Driscoll B, Ferré EC, Stevenson CT, Magee C (2015) The significance of magnetic fabric in layered mafic-ultramafic intrusions. In: Charlier B, Namur O, Latypov R, Tegner C (eds) Layered intrusions. Springer, pp 295–329Google Scholar
  77. O’Driscoll B, Hargraves RB, Emeleus CH, Troll VR, Donaldson CH, Reavy RJ (2007) Magmatic lineations inferred from anisotropy of magnetic susceptibility fabrics in Units 8, 9, and 10 of the Rum Eastern Layered Series, NW Scotland. Lithos 98(1–4):27–44CrossRefGoogle Scholar
  78. Orlický O (1990) Detection of magnetic carriers in rocks: results of susceptibility changes in powdered rock samples induced by temperature. Phys Earth Planet Inter 63:66–70CrossRefGoogle Scholar
  79. Orth K, McPhie J (2003) Textures formed during emplacement and cooling of a Palaeoproterozoic, small-volume rhyolitic sill. J Volcanol Geoth Res 128:341–362CrossRefGoogle Scholar
  80. Paterson SR, Vernon RH, Tobisch OT (1989) A review of criteria for the identification of magmatic and tectonic foliations in granitoids. J Struct Geol 11(3):349–363 CrossRefGoogle Scholar
  81. Paterson SR, Fowler TKJ, Schmidt KL, Yoshinobu AS, Yuan ES, Miller RB (1998) Interpreting magmatic fabric patterns in plutons. Lithos 44:53–82CrossRefGoogle Scholar
  82. Paterson SR, Pignotta GS, Vernon RH (2004) The significance of microgranitoid enclave shapes and orientations. J Struct Geol 26(8):1465–1481CrossRefGoogle Scholar
  83. Pavlis TL (1996) Fabric development in syn-tectonic intrusive sheets as a consequence of melt-dominated flow and thermal softening of the crust. Tectonophysics 253(1):1–31CrossRefGoogle Scholar
  84. Philpotts AR, Asher PM (1994) Magmatic flow-direction indicators in a giant diabase feeder dike, Connecticut. Geology 22(4):363–366CrossRefGoogle Scholar
  85. Philpotts AR, Philpotts DE (2007) Upward and downward flow in a camptonite dike as recorded by deformed vesicles and the anisotropy of magnetic susceptibility (AMS). J Volcanol Geoth Res 161(1–2):81–94CrossRefGoogle Scholar
  86. Pirsson LV (1899) On the phenocrysts of intrusive igneous rocks. Am J Sci 40:271–280CrossRefGoogle Scholar
  87. Platten IM (1984) Fluidized mixtures of magma and rock in a late Caledonian breccia dyke and associated breccia pipes in Appin, Scotland. Geol J 19:209–226CrossRefGoogle Scholar
  88. Platten IM (1995) The significance of phenocryst distributions in chilled margins of dykes and sills for the interpretation of tip processes. In: Baer G, Heimann A (eds) Physics and chemistry of dykes. Balkema, Rotterdam, pp 141–150Google Scholar
  89. Pollard DD (1973) Derivation and evaluation of a mechanical model for sheet intrusions. Tectonophys 19:233–269CrossRefGoogle Scholar
  90. Pollard DD, Johnson AM (1973) Mechanics of growth of some laccolithic intrusions in the Henry mountains, Utah, II: Bending and failure of overburden layers and sill formation. Tectonophys 18(3–4):311–354CrossRefGoogle Scholar
  91. Pollard DD, Muller OH, Dockstader DR (1975) The form and growth of fingered sheet intrusions. Geol Soc Am Bull 86(3):351–363CrossRefGoogle Scholar
  92. Prior DJ, Mariani E, Wheeler J (2009) EBSD in the earth sciences: applications, common practice, and challenges. In: Schwartz AJ, Kumar M, Adams BL, Field DP (eds) Electron backscatter diffraction in materials science. Springer, pp 345–360CrossRefGoogle Scholar
  93. Randall BAO, Farmer N (1970) The Holy Island dyke. Nat Hist Soc Northumberland Trans 16:9–91Google Scholar
  94. Reedman AJ, Park KH, Merriman RJ, Kim SE (1987) Welded tuff infilling a volcanic vent at Weolseong, Republic of Korea. Bull Volcanol 49(3):541–546CrossRefGoogle Scholar
  95. Richter C, van der Pluijm BA (1994) Separation of paramagnetic and ferrimagnetic susceptibilities using low-temperature magnetic susceptibilities and comparison with high field methods. Phys Earth Planet Inter 82:113–123CrossRefGoogle Scholar
  96. Rickwood PC (1990) The anatomy of a dyke and the determination of propagation and magma flow directions. In: Parker AJ, Rickwood PC, Tucker DH (eds) Mafic dykes and emplacement mechanisms. Balkema, RotterdamGoogle Scholar
  97. Rocchi S, Westerman DS, Dini A, Innocenti F, Tonarini S (2002) Two-stage laccolith growth at Elba Island (Italy). Geology 30(11):983–986CrossRefGoogle Scholar
  98. Rocchi S, Mazzotti A, Marroni M, Pandolfi L, Costantini P, Bertozzi G, di Biase D, Federici F, Lô PG (2007) Detection of Miocene saucer-shaped sills (offshore Senegal) via integrated interpretation of seismic, magnetic and gravity data. Terra Nova 19:232–239CrossRefGoogle Scholar
  99. Rocchi S, Dini A, Mazzarini F, Westerman DS (2010a) Themed Issue: LASI III–Magma pulses and sheets in tabular intrusions. GeosphereGoogle Scholar
  100. Rocchi S, Westerman DS, Dini A, Farina F (2010b) Intrusive sheets and sheeted intrusions at Elba Island (Italy). Geosphere 6(3):225–236CrossRefGoogle Scholar
  101. Roni E (2012) Magma flow in shallow-level laccoliths and their feeder dykes (Elba island and Orciatico, Tuscany) revealed by AMS and structural data. In: Ph.D. thesis, University of Pisa, p 202Google Scholar
  102. Roni E, Westerman DS, Dini A, Stevenson C, Rocchi S (2014) Feeding and growth of a dyke–laccolith system (Elba Island, Italy) from AMS and mineral fabric data. J Geol Soc 171:413–424CrossRefGoogle Scholar
  103. Ross ME (1986) Flow differentiation, phenocryst alignment, and compositional trends within a dolerite dike at Rockport, Massachusetts. Geol Soc Am Bull 97(2):232–240CrossRefGoogle Scholar
  104. Schmiedel T, Breitkreuz C, Görz I, Ehling BC (2015) Geometry of laccolith margins: 2D and 3D models of the Late Paleozoic Halle Volcanic Complex (Germany). Int J Earth Sci 104(2):323–333CrossRefGoogle Scholar
  105. Schofield N, Stevenson C, Reston T (2010) Magma fingers and host rock fluidization in the emplacement of sills. Geology 38:63–66CrossRefGoogle Scholar
  106. Schofield N, Heaton L, Holford SP, Archer SG, Jackson CA-L, Jolley DW (2012a) Seismic imaging of ‘broken bridges’: linking seismic to outcrop-scale investigations of intrusive magma lobes. J Geol Soc 169(4):421–426CrossRefGoogle Scholar
  107. Schofield NJ, Brown DJ, Magee C, Stevenson CT (2012b) Sill morphology and comparison of brittle and non-brittle emplacement mechanisms. J Geol Soc 169(2):127–141CrossRefGoogle Scholar
  108. Schofield N, Alsop I, Warren J, Underhill JR, Lehné R, Beer W, Lukas V (2014) Mobilizing salt: magma-salt interactions. Geology 42(7):599–602CrossRefGoogle Scholar
  109. Schwab M (1962) Über die Inkohlung der Steinkohlen im nördlichen Saaletrog bei Halle. Geologie 11:917–942Google Scholar
  110. Simón JL, Arlegui LE, Pocoví A (2006) Fringe cracks and plumose structures in layered rocks: stepping senses and their implications for palaeostress interpretation. J Struct Geol 28(6):1103–1113CrossRefGoogle Scholar
  111. Simpson C, Schmid SM (1983) An evaluation of criteria to deduce the sense of movement in sheared rocks. Geol Soc Am Bull 94(11):1281–1288CrossRefGoogle Scholar
  112. Skilling IP, White JDL, McPhie J (2002) Peperite: a review of magma-sediment mingling. J Volcanol Geoth Res 114:1–17CrossRefGoogle Scholar
  113. Słodczyk E, Pietranik A, Breitkreuz C, Pędziwiatr A, Bokła M, Schab K, Grodzicka M (2015) Formation of a laccolith by magma pulses: evidence from modal and chemical composition of the 500 m long borehole section through the Permo-Carboniferous Landsberg laccolith (Halle Volcanic Complex). Geochem J 49:523–537CrossRefGoogle Scholar
  114. Smith RP (1987) Dyke emplacement at Spanish Peaks, Colorado. In: Halls HC, Fahrig WH (eds) Mafic dyke swarms, vol 34. Geological Association of Canada Special Paper, pp 47–54Google Scholar
  115. Stearns DW (1978) Faulting and forced folding in the Rocky Mountain foreland. In: Matthews V (ed) Laramide folding associated with basement block faulting in the Western United States, vol 151. Geological Society of America Memoir, pp 1–38Google Scholar
  116. Stevenson CTE, Bennett N (2011) The emplacement of the palaeogene mourne granite centres, Northern Ireland: New results from the Western Mourne Centre. J Geol Soc Lond 168:831–836CrossRefGoogle Scholar
  117. Stevenson CTE, Owens WH, Hutton DHW (2007a) Flow lobes in granite: The determination of magma flow direction in the Trawenagh Bay Granite, northwestern Ireland, using anisotropy of magnetic susceptibility. Geol Soc Am Bull 119(11):1368–1386CrossRefGoogle Scholar
  118. Stevenson CTE, Owens WH, Hutton DHW, Hood DN, Meighan IG (2007b) Laccolithic, as opposed to cauldron subsidence, emplacement of the Eastern Mourne pluton, N. Ireland: evidence from anisotropy of magnetic susceptibility. J Geol Soc 164(1):99–110CrossRefGoogle Scholar
  119. Svensen H, Jamtveit B, Planke S, Chevallier L (2006) Structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa. J Geol Soc Lond 163:671–682CrossRefGoogle Scholar
  120. Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman & Hall, London, p 217Google Scholar
  121. Thomson K, Hutton DHW (2004) Geometry and growth of sill complexes: insights using 3D seismic from the North Rockall Trough. Bull Volc 66:364–375CrossRefGoogle Scholar
  122. Thomson K, Petford N (2008) Structure and emplacement of high-level magmatic systems. In: Geological Society, London, Special Publication, vol 302, p 227Google Scholar
  123. Thomson K, Schofield N (2008) Lithological and structural controls on the emplacement and morphology of sills in sedimentary basins. In: Thomson K, Petford N (eds) Structure and emplacement of high-level magmatic systems, vol 302. Geol Soc London Spec Publ, pp 31–44CrossRefGoogle Scholar
  124. Tobisch OT, McNulty BA, Vernon RH (1997) Microgranitoid enclave swarms in granitic plutons, central Sierra Nevada, California. Lithos 40:321–339CrossRefGoogle Scholar
  125. Tweto O (1951) Form and structure of sills near Pando, Colorado. Geol Soc Am Bull 62(5):507–532CrossRefGoogle Scholar
  126. Varga RJ, Gee JS, Staudigel H, Tauxe L (1998) Dike surface lineations as magma flow indicators within the sheeted dike complex of the Troodos Ophiolite, Cyprus. J Geophys Res 103(B3):5241–5256CrossRefGoogle Scholar
  127. Vernon RH (2000) Review of microstructural evidence of magmatic and solid-state flow. Vis Geosci 5(2):1–23CrossRefGoogle Scholar
  128. Vernon RH (2004) A practical guide to rock microstructure. Cambridge University Press, p 594Google Scholar
  129. Vernon RH, Etheridge MA, Wall VJ (1988) Shape and microstructures of microgranitoid enclaves: indicators of magma mingling and flow. Lithos 22:1–11CrossRefGoogle Scholar
  130. Walker G (1987) The dike complex of Koolau volcano, Oahu: internal structure of a Hawaiian rift zone. Volcanism in Hawaii. In: USGS Professional Paper 1350, Volcanism in Hawaii, pp 961–993Google Scholar
  131. Wilson PI, McCaffrey KJ, Wilson RW, Jarvis I, Holdsworth RE (2016) Deformation structures associated with the Trachyte Mesa intrusion, Henry Mountains, Utah: implications for sill and laccolith emplacement mechanisms. J Struct Geol 87:30–46CrossRefGoogle Scholar
  132. Winter C, Breitkreuz C, Lapp M (2008) Textural analysis of a Late Palaeozoic coherent to pyroclastic rhyolitic dyke system near Burkersdorf (Erzgebirge, Saxony, Germany). In: Thomson K, Petford N (eds) Structure and emplacement of high-level magmatic systems, vol 302. Geol Soc London Spec Publ, pp 197–219CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Norwich UniversityNorthfieldUSA
  2. 2.Dipartimento di Scienze della TerraUniversità di PisaPisaItaly
  3. 3.TU BergakademieFreibergGermany
  4. 4.University of BirminghamBirminghamUK
  5. 5.Kingston UniversityLondonUK

Personalised recommendations