Skip to main content

Sparse Coding for Improved Signal-to-Noise Ratio in MRI

  • Conference paper
Neural Information Processing (ICONIP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8836))

Included in the following conference series:

Abstract

Magnetic Resonance images (MRI) do not only exhibit sparsity but their sparsity take a certain predictable shape which is common for all kinds of images. That region based localised sparsity can be used to de-noise MR images from random thermal noise. This paper present a simple framework to exploit sparsity of MR images for image de-noising. As, noise in MR images tends to change its shape based on contrast level and signal itself, the proposed method is independent of noise shape and type and it can be used in combination with other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nowak, R.D.: Wavelet-based rician noise removal for magnetic resonance imaging. IEEE Transactions on Image Processing 8(10), 1408–1419 (1999)

    Article  Google Scholar 

  2. Macovski, A.: Noise in mri. Magnetic Resonance in Medicine 36(3), 494–497 (1996)

    Article  Google Scholar 

  3. Edelstein, W.A., Bottomley, P.A., Pfeifer, L.M.: A signal-to-noise calibration procedure for nmr imaging systems. Medical Physics 11(2), 180–185 (1984)

    Article  Google Scholar 

  4. Drumheller, D.: General expressions for rician density and distribution functions. IEEE Transactions on Aerospace Electronic Systems 29, 580–588 (1993)

    Article  Google Scholar 

  5. Parrish, T., Hu, X.: Continuous update with random encoding (cure): a new strategy for dynamic imaging. Magnetic resonance in medicine 33(3), 326–336 (1995)

    Article  Google Scholar 

  6. Doyle, M., Walsh, E.G., Blackwell, G.G., Pohost, G.M.: Block regional interpolation scheme for k-space (brisk): A rapid cardiac imaging technique. Magnetic Resonance in Medicine 33(2), 163–170 (1995)

    Article  Google Scholar 

  7. Alexander, M., Baumgartner, R., Summers, A., Windischberger, C., Klarhoefer, M., Moser, E., Somorjai, R.: A wavelet-based method for improving signal-to-noise ratio and contrast in mr images. Magnetic Resonance Imaging 18(2), 169–180 (2000)

    Article  Google Scholar 

  8. Samsonov, A.A., Johnson, C.R.: Noise-adaptive nonlinear diffusion filtering of mr images with spatially varying noise levels. Magnetic Resonance in Medicine 52(4), 798–806 (2004)

    Article  Google Scholar 

  9. Murase, K., Yamazaki, Y., Shinohara, M., Kawakami, K., Kikuchi, K., Miki, H., Mochizuki, T., Ikezoe, J.: An anisotropic diffusion method for denoising dynamic susceptibility contrast-enhanced magnetic resonance images. Physics in Medicine and Biology 46(10), 2713 (2001)

    Article  Google Scholar 

  10. Pizurica, A., Philips, W., Lemahieu, I., Acheroy, M.: A versatile wavelet domain noise filtration technique for medical imaging. IEEE Transactions on Medical Imaging 22(3), 323–331 (2003)

    Article  Google Scholar 

  11. Healy Jr, D.M., Weaver, J.B.: Two applications of wavelet transforms in magnetic resonance imaging. IEEE Transactions on Information Theory 38(2), 840–860 (1992)

    Article  Google Scholar 

  12. Wirestam, R., Bibic, A., Lätt, J., Brockstedt, S., Ståhlberg, F.: Denoising of complex mri data by wavelet-domain filtering: Application to high-b-value diffusion-weighted imaging. Magnetic Resonance in Medicine 56(5), 1114–1120 (2006)

    Article  Google Scholar 

  13. Yang, X., Fei, B.: A wavelet multiscale denoising algorithm for magnetic resonance (mr) images. Measurement Science and Technology 22(2), 025803 (2011)

    Google Scholar 

  14. Razzaq, F., Mohamed, S., Bhatti, A., Nahavandi, S.: Non-uniform sparsity in rapid compressive sensing mri. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2253–2258 (October 2012)

    Google Scholar 

  15. Razzaq, F.A., Mohamed, S., Bhatti, A., Nahavandi, S.: Defining sub-regions in locally sparsified compressive sensing mri. In: The IASTED Int Conf. on Biomedical Engineering (BioMED), pp. 360–367 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Razzaq, F.A., Mohamed, S., Bhatti, A., Nahavandi, S. (2014). Sparse Coding for Improved Signal-to-Noise Ratio in MRI. In: Loo, C.K., Yap, K.S., Wong, K.W., Beng Jin, A.T., Huang, K. (eds) Neural Information Processing. ICONIP 2014. Lecture Notes in Computer Science, vol 8836. Springer, Cham. https://doi.org/10.1007/978-3-319-12643-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12643-2_32

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12642-5

  • Online ISBN: 978-3-319-12643-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics