Advertisement

Involvement of Vascular Endothelial Growth Factor in Serotonin 1A Receptor-Mediated Neuroproliferation in Neonatal Mouse Hippocampus

  • S. Samaddar
  • B. Ranasinghe
  • S. J. Tantry
  • P. R. Debata
  • P. BanerjeeEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 842)

Abstract

The serotonin 1A receptor (5-HT1A-R) has been linked to many diverse functions in the brain. Our earlier studies have revealed its signaling pathways and function in the hippocampus as well as the prefrontal cortex of neonatal and young adult mice of two strains, C57BL6 and Swiss Webster. Such experiments have revealed that the 5-HT1A-R associates and functionally cooperates with molecules like calmodulin kinase II and the N-methyl-d-aspartic acid receptor to stimulate clozapine-evoked neuronal activity in the prefrontal cortex. Furthermore, in the neonatal mouse brain, 5-HT1A-R signaling plays a profound role in orchestrating hippocampal development through protein kinase C isozymes and the extracellular signal-regulated kinases 1 and 2 (ERK1/2). Results presented here establish that downstream of ERK1/2, vascular endothelial growth factor (VEGF) signaling further amplifies the ERK1/2-mediated neuroproliferative signaling in the neonatal hippocampus. This also indicates that VEGF signaling inhibitors, typically used in cancer therapy, may cause serious detrimental effects by inhibiting hippocampal neuroproliferation.

Keywords

PKC isozymes Neonatal 5-HT1A receptor VEGFR1/2 Hippocampus 

Abbreviations

5-HT1A-R

Serotonin 1A receptor

D

8-OH-DPAT (5-HT1A-R agonist)

M

Myr-εV1-2 (N-Myr-EAVSLKPT) (a PKCε translocation inhibitor)

SU5416/S8442 (Semaxanib, VEGFR1/2 inhibitor) SGZ

Subgranular zone

U

U0126 (inhibitor of MEK)

W or WAY

WAY100635 (5-HT1A-R antagonist)

Notes

Acknowledgements

The authors express gratitude to Dr. Sudarshana Purkayastha for expert assistance in immunohistochemistry and Dr. Sara Rose Guariglia for help in confocal imaging.

Conflict of Interest

None of the authors have any conflict of interest.

References

  1. Adayev T, El-Sherif Y, Barua M, Banerjee P (1999) Agonist stimulation of the serotonin 1A receptor causes suppression of anoxia-induced apoptosis via mitogen-activated protein kinase in neuronal HN2-5 cells. J Neurochem 72:1489–1496CrossRefGoogle Scholar
  2. Adayev T, Ray I, Sondhi R, Sobocki T, Banerjee P (2003) The G protein-coupled 5-HT1A receptor causes suppression of caspase-3 through MAPK and protein kinase Ca. Biochim Biophys Acta 1640:85–96CrossRefGoogle Scholar
  3. Adayev T, Ranasinghe B, Banerjee P (2005) Transmembrane signaling in the brain by serotonin, a key regulator of physiology and emotion. Biosci Rep 25:363–385CrossRefGoogle Scholar
  4. Bhattacharya R, Kwon J, Li X, Wang E, Patra S, Bida JP, Bajzer Z, Claesson-Welsh L, Mukhopadhyay D (2009) Distinct role of PLC 3 in VEGF-mediated directional migration and vascular sprouting. J Cell Sci 122:1025–1034CrossRefGoogle Scholar
  5. Cao Lei JX, Zuzga David S, Liu Y, Fong DM, Young D, During MJ (2004) VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet 36:827–835CrossRefGoogle Scholar
  6. Carmeliet P, Almodovar C (2013) VEGF ligands and receptors: implications in neurodevelopment and neurodegeneration. Cell Mol Life Sci 70(10):1763–1778CrossRefGoogle Scholar
  7. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40CrossRefGoogle Scholar
  8. Chen L, Hahn H, Wu G, Chen C-H, Liron R, Schechtman D, Cavallaro G, Banci L, Guo Y, Bolli R, Dorn GW, Mochly-Rosen D (2001) Opposing cardioprotective actions and parallel hypertrophic effects of delta PKC and epsilon PKC. Proc Natl Acad Sci U S A 98:11114–11119CrossRefGoogle Scholar
  9. Greene J, Banasr M, Lee B, Warner-Schmidt J, Duman RS (2009) Vascular endothelial growth factor signaling is required for the behavioral actions of antidepressant treatment: pharmacological and cellular characterization. Neuropsychopharmacology 34:2459–2468CrossRefGoogle Scholar
  10. Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L, Santarelli L, Beck S, Hen R (2002) Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416:396–400CrossRefGoogle Scholar
  11. Heisler LK, Chu H-M, Brennan TJ, Danao JA, Bajwa P, Parsons LH, Tecott LH (1998) Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc Natl Acad Sci U S A 95:15049–15054CrossRefGoogle Scholar
  12. Hongpaisan J, Sun M-K, Alkon DL (2011) PKC epsilon activation prevents synaptic loss, A beta elevation, and cognitive deficits in Alzheimer’s disease transgenic mice. J Neurosci 31(2):630–643CrossRefGoogle Scholar
  13. Johnson JA, Gray MO, Chen S-H, Mochly-Rosen D (1996) A protein kinase C translocation inhibitor as an isozyme-selective antagonist of cardiac. J Biol Chem 271:24962–24966CrossRefGoogle Scholar
  14. Kessler RC, Berglund P, Demier O, Jin R, Merikangas KR, Walters EE (2005) Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62:593–602CrossRefGoogle Scholar
  15. Kushwaha N, Albert N (2005) Coupling of 5-HT1A autoreceptors to inhibition of mitogen-activated protein kinase activation via G beta gamma subunit signaling. Eur J Neurosci 21:721–732CrossRefGoogle Scholar
  16. Lee Jeong-Sik SH (2009) Induction of neuronal vascular endothelial growth factor expression by cAMP in the dentate gyrus of the hippocampus is required for the anti-depressant-like behaviors. J Neurosci 29(26):8493–8505CrossRefGoogle Scholar
  17. Lemonde S, Du L, Bakish D, Hrdina P, Albert PR (2004) Association of the C(-1019)G 5-HT1A functional promoter polymorphism with antidepressant response. Int J Neuropsychopharmacol 7(4):501–506CrossRefGoogle Scholar
  18. Lo Iacono L, Gross C (2008) Alpha-Ca2+/calmodulin-dependent protein kinase II contributes to the developmental programming of anxiety in serotonin receptor 1A knock-out mice. J Neurosci 28:6250–6257CrossRefGoogle Scholar
  19. Louissaint A Jr et al (2002) Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 34(6):945–960CrossRefGoogle Scholar
  20. Lu K-T, Sun C-L, Wo PY, Yen H-H, Yang Y-L (2011) Hippocampal neurogenesis after traumatic brain injury is mediated by vascular endothelial growth factor receptor-2 and the Raf/MEK/ERK cascade. J Neurotrauma 28(3):441–450CrossRefGoogle Scholar
  21. Mehta M, Ahmed Z, Fernando SS, Cano-Sanchez P, Adayev T, Ziemnicka D, Wieraszko A, Banerjee P (2007) Plasticity of 5-HT1A receptor-mediated signaling during early postnatal brain development. J Neurochem 101(4):918–928CrossRefGoogle Scholar
  22. Mogha A, Guariglia SR, Debata PR, Wen GY, Banerjee P (2012) Serotonin 1A receptor-mediated signaling through ERK and PKCα is essential for normal synaptogenesis in neonatal mouse hippocampus. Transl Psychiatry 2:e66CrossRefGoogle Scholar
  23. Mologni L, Sala E, Cazzaniga S, Rostagno R, Kuoni T, Puttini M, Bain J, Cleris L, Redaelli S, Riva B, Formelli F, Scapozza L, Gambacorti-Passerini C (2006) Inhibition of RET tyrosine kinase by SU5416. J Mol Endocrinol 37(2):199–212CrossRefGoogle Scholar
  24. Mukherji SK (2010) Bevacizumab (Avastin). AJNR Am J Neuroradiol 31:235–236CrossRefGoogle Scholar
  25. Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425(4):479–494CrossRefGoogle Scholar
  26. Parks CL, Robinson PS, Sibille E, Shenk T, Toth M (1998) Increased anxiety of mice lacking the serotonin1A receptor. Proc Natl Acad Sci U S A 95:10734–10739CrossRefGoogle Scholar
  27. Purkayastha S, Fernando SS, Diallo S, Cohen L, Levano K, Banerjee P (2009) Regulation of protein kinase C isozymes during early post-natal hippocampal development. Brain Res 1288:29–41CrossRefGoogle Scholar
  28. Purkayastha S, Ford J, Kanjilal B, Diallo S, Inigo JDR, Neuwirth L, Elidrissi A, Ahmed Z, Wieraszko A, Banerjee P (2012) Clozapine functions through the prefrontal cortex serotonin 1A receptor to heighten neuronal activity via calmodulin kinase II-NMDA receptor interactions. J Neurochem 120:396–407CrossRefGoogle Scholar
  29. Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelsohn M, Mann JJ, Brunner D, Hen R (1998) Serotonin receptor1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci U S A 95:14476–14481CrossRefGoogle Scholar
  30. Samaddar S, Debata PR, Chanthrakumar P, Marsillo A, Tantry SJ, Banerjee P (2013) Serotonin 1A receptor-mediated signaling cascade in neuroblast proliferation and neurogenesis in neonatal hippocampus. 24th Biennial Joint meeting of the International Society for Neurochemistry (ISN) and American Society for Neurochemistry (ASN), Mexico, April 20–24. Abstract Code: PSM08-14Google Scholar
  31. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Aracio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809CrossRefGoogle Scholar
  32. Shimizu T, Kanno A, Nishizaki T (2011) α, ß-DCP-LA selectively activates PKC-ε and stimulates neurotransmitter release with the highest potency among 4 diastereomers. Cell Physiol Biochem 27:149–158CrossRefGoogle Scholar
  33. Sodhi MS, Sanders-Bush E (2004) Serotonin and brain development. Int Rev Neurobiol 59:111–174CrossRefGoogle Scholar
  34. Teng LC-W, Kay H, Chen Q, Adams JS, Grilli C, Guglielmello G, Zambrano C, Krass S, Bell A, Young LH (2008) Mechanisms related to the cardioprotective effects of protein kinase C epsilon (PKCe) peptide activator or inhibitor in rat ischemia/reperfusion injury. Naunyn Schmiedebergs Arch Pharmacol 378:1–15CrossRefGoogle Scholar
  35. Tille J-C, Wood J, Mandriota SJ, Schnell C, Ferrani S, Mestan J, Zhu Z, Witte L, Pepper MS (2001) Vascular endothelial growth factor (VEGF) receptor-2 antagonists inhibit VEGF- and basic fibroblast growth factor-induced angiogenesis in vivo and in vitro. J Pharmacol Exp Therap 299:1073–1085Google Scholar
  36. Warner-Schmidt JL, Duman RS (2007) VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants. Proc Natl Acad Sci 104(11):4647–4652CrossRefGoogle Scholar
  37. Warner-Schmidt JL, Duman RS (2008) VEGF as a potential target for therapeutic intervention in depression. Curr Opin Pharmacol 8(1):14–19CrossRefGoogle Scholar
  38. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • S. Samaddar
    • 1
  • B. Ranasinghe
    • 2
  • S. J. Tantry
    • 3
  • P. R. Debata
    • 4
  • P. Banerjee
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.The College of Staten Island (CUNY)Staten IslandUSA
  2. 2.CUNY Graduate CenterThe College of Staten Island (CUNY)Staten IslandUSA
  3. 3.Department of ChemistryThe College of Staten Island (CUNY)Staten IslandUSA
  4. 4.Center for Developmental NeuroscienceThe College of Staten Island (CUNY)Staten IslandUSA

Personalised recommendations