Regulations of Glycolipid: XI. Glycosyltransferase (GSL: GLTs) Genes Involved in SA-LeX and Related GSLs Biosynthesis in Carcinoma Cells by Biosimilar Apoptotic Agents: Potential Anticancer Drugs

  • Subhash BasuEmail author
  • Rui Ma
  • Joseph R. Moskal
  • Manju Basu
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 842)


New biosimilar apoptotic agents identified during our recent studies can be employed as a new generation of anti-cancer drugs after being properly delivered to the patients by a proper drug delivery system. These agents regulate at gene level as evidenced by both translational and transcriptional studies. In order to study glyco-gene regulation, we used four clonal metastatic cancer cells of colon and breast cancer-tissue origin (Colo-205, SKBR-3, MDA-468, and MCF-7). The glyco-genes for synthesis of SA-Lex and SA-Lea (which contain N-acetylglucosamine, sialic acid, and fucose) in these cells was modulated differentially at various phases induced by l-PPMP, d-PDMP (inhibitor of glucosylceramide biosynthesis), Betulinic Acid (a triterpinoid isolated from the bark of certain trees and used for cancer treatment in China), Tamoxifen (a drug in use in the west for treatment of early stages of the disease in breast cancer patients), and cis-platin (an inhibitor of DNA biosynthesis used for testicular cancer patients) when used for induction of apoptosis in the above mentioned cell lines. Biosimilarities of these chemicals reside in their killing abilities of these highly metastatic cells by apoptosis. Within 2–6 h, transcriptional modulation of a number of glyco-genes was observed by DNA micro-array (containing over 340 glyco-genes attached to the glass cover slips) studies. Under a long incubation time (24–48 h) almost all of the glyco-gene products, glycolipid: glycosyltransferases (GLTs) were downregulated. The cause of these glyco-gene regulations during apoptotic induction in metastatic carcinoma cells is unknown and needs future investigations for further explanations. At least two GSL-GLT activities (GLTs) of Basu-Roseman pathway2 catalyzing the biosynthesis of GD1a and GD3 gangliosides and more than five GSL: GLTs in the SA-LeX pathway2 have been regulated. Most of these glyco-genes are expressed in the early stages (7–17 days) of embryonic chicken-brain development and lowered in the adult stage. However, the mechanism of regulation of the enzymatic activities of these GLTs in the synthesis of SA-LeX (human cancer cell marker) is unknown. Our recent attempt of in vitro Glyco-gene regulation in apoptotic metastatic cells may lead us to explain the in vivo Glyco-gene regulation in normal or diseased animal organs.


Betulinic acid cis-Platin Colo-205 DNA microarray D-PDMP - Gangliosides Gene regulation Glycosyltransferases GSL–GLT l-PPMP MCF-7 MDA-468 Melphalan Sialo-Lewis X SKBR-3 Tamoxifen 



We thank Mrs. Dorisanne Nielsen and Mr. Eric Kuehner for their help during preparation of this manuscript. Our sincere thanks to Dr. Sipra Banerjee of the Cleveland Clinic Foundation who initially (decade ago) provided us the clones of the breast carcinoma cell: SKBR-3, MDA-468, and MCF-7, which we have maintained continuously for this work. This research work was supported by the Jacob Javits Research Award from NIH-NINDS, NCI, and the Coleman Cancer Foundation (continuous long-term support) to S. Basu; and a grant-in-aid from Siemens Corporation to M. Basu.


  1. Abraham J (2013) Developing oncology biosimilars: an essential approach for the future. Semin Oncol 40(Suppl 1):5–24CrossRefGoogle Scholar
  2. Arunkumar E, Fu N, Smith BD (2006) Squarine-derived rotaxanes: highly stable, fluorescent near-IR dyes. Chemistry 12(17):4684–4690CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ashizawa T, Aoki T, Yanazaki T, Katayanagi S, Shinizu H, Koyanagy Y (2003) The clinical significance of sialyl-Lewis antigen expression in the spread of gastric cancer. J Exp Clin Cancer Res 22(1):91–98PubMedPubMedCentralGoogle Scholar
  4. Aziz F, Qiu Y (2014) The role of anti-LeY antibody in the downregulation of MAPKs/COX-2 pathway in gastric cancer. Curr Drug Targets 15:465–472CrossRefGoogle Scholar
  5. Banerjee M, Singh P, Panda D (2010) Curcumin suppresses the dsynamic instability of microtubules activates the mitotic checkpoint and induces apoptosis in MCF-7 cells. FEBS J 277(16):3437–3448CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barthel SR, Gavino JD, Wiese GK, Jaynes JM, Siddiqui J, Dimittrof CJ (2008) Analysis of glycosyltransferase expression in metastatic prostate cancer cells: capable of rolling activity on microvascular endothelial (E) selectin. Glycobiology 18(19):806–817CrossRefPubMedPubMedCentralGoogle Scholar
  7. Basu M, Basu S (1972) Enzymatic synthesis of a tetraglycosylceramide by a galactosyltransferase from rabbit bone marrow. J Biol Chem 247(5):1489–1495PubMedPubMedCentralGoogle Scholar
  8. Basu M, Basu S (1973) Enzymatic synthesis of a blood group B relatesd pentaglycosyl-ceramide by an alpha-galactosyltransferase from rabbit bone marrow. J Biol Chem 248(5):1700–1706PubMedPubMedCentralGoogle Scholar
  9. Basu S, Basu M (1982) Expression of glycolipid glycosyltransferases in development and transformation. In: Horowitz M (ed) Glycoconjugates, vol 3. Academic, New York, pp 265–285CrossRefGoogle Scholar
  10. Basu M, Basu S (2002) Micelles and liposomes in metabolic enzymes and glycolipid glycosyltransferase assays. In: Basu SC, Basu M (eds) Liposome methods and protocols. Humana, Totowa, pp 107–130CrossRefGoogle Scholar
  11. Basu S, Kaufman B, Roseman S (1965) Conversion of Tay-Sachs ganglioside to monosialoganglioside by brain uridine diphosphate d-galactose: glycolipid galactosyltransferase. J Biol Chem 240:4114–4117Google Scholar
  12. Basu S, Kaufman B, Roseman S (1968) Enzymatic synthesis of ceramide-glucose and ceramide lactose by glycosyltransferase from embryonic chicken brain. J Biol Chem 243:5802–5804PubMedGoogle Scholar
  13. Basu S, Schultz A, Basu M, Roseman S (1971) Enzymatic synthesis of galactocerebroside by a galactosyltransferase from embryonic chicken brain. J Biol Chem 243:4272–4279Google Scholar
  14. Basu S, Kaufman B, Roseman S (1973) Enzymatic synthesis of glucocerebroside by a glucosyltransferase from embryonic chicken brain. J Biol Chem 248:1388–1394PubMedGoogle Scholar
  15. Basu M, Presper KA, Basu S, Hoffman LM, Brooks SE (1979) Differential activities of glycolipid glycosyltransferase in Tay-Sachs disease: studies in cultured cells from cerebrum. Proc Natl Acad Sci U S A 76:4270–4274CrossRefPubMedPubMedCentralGoogle Scholar
  16. Basu M, Basu S, Potter M (1980) Biosynthesis of blood group related glycosphingolipids in T- and B-lymphomas and neuroblastoma cells. In: Sweeley CC (ed) Cell surface glycolipids. American chemical society symposium, vol. 128. p 187–212Google Scholar
  17. Basu M, Basu S, Stoffyn A, Stoffyn P (1982) Biosynthesis in vitro of Sialyl-alpha2,3-neolactotetraosylceramide by a sialyltransferase from embryonic chicken brain. J Biol Chem 257:12765–12769PubMedGoogle Scholar
  18. Basu M, De T, Das K, Kyle JW, Chon HC, Schaeper RJ, Basu S (1987) Glycosyltransferases involved in glycolipid biosynthesis. In: Ginsburg V (ed) Methods in enzymology, vol 38. Academic, New York, pp 575–607Google Scholar
  19. Basu M, Hawes JW, Li Z, Ghosh S, Khan FA, Zhang BJ, Basu S (1991) Biosynthesis in vitro of SA-LeX and SA-diLeX by alpha 1-3 fucosyltransferases from colon carcinoma cells and embryonic brain tissues. Glycobiology 1(5):527–535CrossRefGoogle Scholar
  20. Basu S, Basu M, Dastgheib S, Hawes JW (1999) Biosynthesis and regulation of glycosphingolipids. In: Meth-Cohn O, Pinto BM, Barton DHR, Nakanishi K (eds) Comprehensive natural products chemistry. Pergamon, New York, pp 107–128CrossRefGoogle Scholar
  21. Basu S, Das K, Basu M (2000) Glycosyltransferase in glycosphingolipid biosynthesis. In: Ernst B, Sinay P, Hart G (eds) Oligosaccharides in chemistry and biology—a comprehensive handbook. Wiley-VCH Verlag Gmbh, Weinheim, pp 329–347Google Scholar
  22. Basu S, Ma R, Mikulla B, Bradley M, Moulton C, Basu M, Banerjee S, Inokuchi J (2004a) Apoptosis of human carcinoma cells in the presence of inhibitors of Glycosphingolipid biosynthesis: I. Treatment of Colo-205 and SKBR3 cells with isomers of PDMP and PPMP. Glycoconj J 20(3):157–168CrossRefGoogle Scholar
  23. Basu S, Ma R, Boyle PJ, Mikulla B, Bradley M, Smith B, Basu M, Banerjee S (2004b) Apoptosis of human carcinoma cells in the presence of potential anti-cancer drugs: III. Treatment of Colo-205 and SKBR3 cells with: cis-Platin, Tamoxifen, Melphalan, Betulinic acid, l-PDMP, l-PPMP, and GD3 ganglioside. Glycoconj J 20(9):563–577CrossRefGoogle Scholar
  24. Basu S, Ma R, Basu M, Goodson H, Smith B, Banerjee S (2004a) Glycosphingolipid metabolism and signaling in apoptotic cancer cells, lipids: sphingolipid metabolizing enzymes. In: Haldar DK, Das SK, (eds) Research Signpost, Kerala. p 81–100Google Scholar
  25. Basu S, Ma R, Moskal JR, Basu M (2012a) Ganglioside biosynthesis in developing brains and apoptotic cancer cells. X. Regulation of glyco-genes involved in GD3 and Sialyl-LeX/a syntheses. Neurochem Res 37:1245–1255CrossRefGoogle Scholar
  26. Basu S, Ma R, Moskal JR, Basu M, Banerjee S (2012b) Apoptosis of breast cancer cells: XI. Modulation of genes of glycoconjugate biosynthesis and targeted drug delivery. In: Sudhakaran PR, Surolia A (eds) Proceedings of 9th international symposium, biochemical roles of eukaryotic cell surface macromolecules. Adv Exp Med Biol 749:233–255Google Scholar
  27. Blagosklonny MV (2000) Cell death beyond apoptosis. Leukemia 14(8):1502–1508CrossRefGoogle Scholar
  28. Boyle PJ (2005) Characterization of DNA Helicase-III in replication complexes isolated from embryonic chicken brains and breast carcinoma cells. PhD Thesis, University of Notre Dame, Notre Dame, IN: 1–186Google Scholar
  29. Boyle PJ, Ma R, Tuteja N, Banerjee S, Basu S (2006) Apoptosis of human breast carcinoma cells in the presence of cis-platin and l-/d-PPMP: IV. Modulation of replication complexes and glycolipid: glycosyltransferases. Glycoconj J 23(3–4):175–187CrossRefGoogle Scholar
  30. Bull LA, Taylor C (2014) Developing clinical trials for biosimilar. Semin Oncol 41(Suppl 1):S15–S25Google Scholar
  31. Cazet A, Lefebvre J, Adriaenssens E, Julien S, Bobowski H, Grigoriads A, Tutt A, Tulasne D, LeBourhis X, Delannoy P (2010) GD3 synthase expression enhances proliferation and tumor growth of MDA-MB-231 breast cancer cells through c-met activation. Mol Cancer Res 8(11):1526–1535CrossRefPubMedPubMedCentralGoogle Scholar
  32. Chachadi VB, Cheng H, Klinkebiel D, Christman JK, Cheng PW (2011) 5-Aza-2′-deoxycytidine increases sialyl Lewis X on MUC1 stimulating beta-galactoside:alpha2,3-sialyltransferase 6 gene. Int J Biochem Cell Biol 43(4):L586–L593CrossRefGoogle Scholar
  33. Chaouki W, Leger DY, Eliastimi JL, Hmamouchi M (2010) Antiproliferative effect of extracts from Aristolochia baetica and Origanum compactumm on human breast cancer cell line MCF-7. Pharm Biol 48(3):269–274CrossRefPubMedPubMedCentralGoogle Scholar
  34. Chien JL, Williams T, Basu S (1973) Biosynthesis of a globoside-type glycosphingolipid by an beta-N-acetygalactosaminyltransferase from embryonic chicken brain. J Biol Chem 248:1778–1785PubMedPubMedCentralGoogle Scholar
  35. Chou CC, Yang JS, Lu HF, Ip SW, Lo C, Wu CC, Lin JP, Tang NNY, Chung JG, Chou MJ, Teng YH, Chen DR (2010) Quercetin-mediated cell cycle arrest and apoptosis involving activation of a Caspase cascade through mitochondrial pathway in human breast cancer MCF-7 cells. Arch Pharm Res 33(8):1181–1191CrossRefPubMedPubMedCentralGoogle Scholar
  36. Flemming AS, Saltzman WM (2001) Simultaneous delivery of an active protein and neutralizing antibody: creation of separated regions of biological activity. J. Control Release, 70(1-2):29–36Google Scholar
  37. Fukushi Y, Hakomori S, Nudelman E, Cochran N (1984a) Novel fucolipids accumulating in human adenocarcinoma. II. Selective isolation of Hybridoma antibodies that differentially recognize mono-, di-, and trifucosylated type 2 chain. J Biol Chem 259(7):4681–4685PubMedPubMedCentralGoogle Scholar
  38. Fukushi Y, Hakomori S, Shepard T (1984b) Localization and alteration of mon-, di-, and trifucosyl alpha1,3 type3 chain structure in human embyogenesis and human cancer. J Exp Med 160(2):506–520CrossRefPubMedPubMedCentralGoogle Scholar
  39. Fulda S, Friesen C, Los M, Mier W, Benedict M, Nunez G, Krammer PH, Peter ME, Debatin KM (1997) Betulinic acid triggers CD95 (APO-1/Fas)- and p53-independent apoptosis via activation of caspases in neurroectodermal tumors. Cancer Res 37:4956–4964Google Scholar
  40. Fuster MM, Brown JR, Wang L, Esko JD (2003) A disaccharide precursor of sialyl X inhibits metastatic potential of tumor cells. Cancer Res 63(11):2775–2781PubMedPubMedCentralGoogle Scholar
  41. Ghosh S, Bell R (2002) Liposomes: applications and protein–lipid interaction studies. In: Basu SC, Basu M (eds) Liposome methods and protocols. Humana, Totowa, pp 49–60CrossRefGoogle Scholar
  42. Higashi H, Basu M, Basu S (1985) Biosynthesis in vitro of disialosylneolacto-tetraosyl-ceramide by a solubilized sialyltransferase from embryonic chicken brain. J Biol Chem 260(2):824–828PubMedGoogle Scholar
  43. Holmes EH, Ostander GK, Hakomori S (1985) Enzymatic basis for the accumulation of glycolipids with X and dimeric X determinants in human lung cancer cells (NCI-H69). J Biol Chem 260(12):7619–7762PubMedGoogle Scholar
  44. Holmes EH, Ostander GK, Hakomori S (1986) Biosynthesis of the sialyl-Lex determinant carried by the type 2 chain glycosphingolipid in humanhuman lung carcinoma PC9 Cells. J Biol Chem 261(8):3737–3743PubMedGoogle Scholar
  45. Jenis DM, Basu S, Pollard M (1982) Increased activity of a beta-galactosyltransferase in tissues of rats bearing prostate and mammary adenocarcinomas. Cancer Biochem Biophys 6:37–45PubMedPubMedCentralGoogle Scholar
  46. Julien S, Grimshaw MJ, Simon-Smith M, Coleman J, Morris HR, Dell A, Taylor-Papadimitiou J, Burchell JM (2007) Sialyl Lewis X on P-selectin glycoprotein ligand-1 is regulated during differentiation and maturation of dendritic cells” a mechanism involving the glycosyltransferases C2GnT1 and STGalI. J Immunol 179(9):5701–5710CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kannagi R (2004) Molecular mechanism for cancer-associated induction of sialyl LewisX and sialyl Lewis A expression. The Warburg effect revisited. (Review). Glycoconj J 20(5):353–364CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kashiwagi H, Kijima H, Dowaki S, Obtani Y, Tobita K, Yamazaki H, Nakamura M, Ueyama Y, Tanaka M, Inokuchi S, Imaizumi T, Makuuchi H (2004) Clinicopathology significance of sialyl LeX expression in human gallbladder carcinoma. Oncol Rep 11(6):1139–1143PubMedPubMedCentralGoogle Scholar
  49. Kaufman B, Basu S, Roseman S (1968) Enzymatic synthesis of disialogangliosides from monosailogangliosides by sialyltransferases from embryonic chicken brain. J Biol Chem 243:5804–5806PubMedPubMedCentralGoogle Scholar
  50. Keenan TW, Morre JD, Basu S (1974) Ganglioside biosynthesis: concentration of glycosphingolipid glycosyltransferase in golgi apparatus from rat liver. J Biol Chem 249:310PubMedPubMedCentralGoogle Scholar
  51. Kessler JH, Mullauer FB, de Roo GM, Medema JP (2007) Broad in vitro efficacy of plant-derived Betulinic acid against cell lines derived from the most prevent human cancer types. Cancer Lett 251(1):132–145CrossRefGoogle Scholar
  52. Kijimoto S, Hakomori S (1971) Enganced glycolipid:alpha-galactosyltransferase activity in contact-inhibited hamster cells and loss of this response in polyoma transformation. Biochem Biophys Res Commun 44L:557–563CrossRefGoogle Scholar
  53. Kim DY, Kang SH, Ghil SH (2010) Circium japonicum extract induces apoptosis and anti-proliferation in the human breast cancer cell line MCF. Mol Med Rep 3(3):427–432CrossRefGoogle Scholar
  54. Kostrzewa RM (2000) Review of apoptosis vs. necrosis of substantia nigra pars compacta in Parkinson’s disease. Neurotox Res 2(2–3):239–250CrossRefGoogle Scholar
  55. Koulov AV, Stucker KA, Lakshmi C, Robinson JP, Smith BD (2003) Detection of apoptotic cells using a synthetic fluorescent sensor for membrane surfaces that contain phosphatidylserine. Cell Death Differ 10(12):1357–13595CrossRefGoogle Scholar
  56. Kroes RA, Panksepp J, Burgdorf J, Otto NJ, Moskal JR (2006) Modeling depression: social dominance-submission gene expression patterns in rat neocortex. Neuroscience 137:37–49CrossRefGoogle Scholar
  57. Kroes RA, He H, Emmett MR, Nilsson CL, Leach FE III, Amster IJ, Marshall AG, Moskal JR (2011) Overexpression of ST6GalNAcV, a gangliposide-specific alpha-2,6-sialyltransferase, inhibits glioma growth in vivo. Proc Natl Acad Sci USA 107(28):12646–12651CrossRefGoogle Scholar
  58. Laezza C, Malfitano AM, DiMatola T, Ricchi P, Bifulco M (2010) Involvement of Akt/NF-kappaB pathway in N6-isopentenyladenosine-induced apoptosis in human breast cancer cells. Mol Carcinog 49(10):892–901CrossRefGoogle Scholar
  59. Leung E, Kim JE, Rewcastle GW, Finlay GJ, Baguley BC (2011) Comparison of the effects of the P13K/mTOR inhibitors NVP-BEZ235 and GSK2126458 on tamoxifen-resistant breast cancer cells. Cancer Biol Ther 11(11):938–946CrossRefPubMedPubMedCentralGoogle Scholar
  60. Li W, Zhang W, Luo J, Cao A, Zhang D, Sheng W, Cai S, Li J (2010a) Alpha1,3 fucosyltransferase VII plays a rile in colorectal carcinoma by promoting the carbohydration of glycoprotein CD24. Oncol Rep 23(6):1609–1617PubMedGoogle Scholar
  61. Li Y, He K, Huang Y, Zheng D, Gap C, Jin YH (2010b) Betulin induces mitochondrial cytochrome c release associated apoptosis in human cancer cells. Mol Carcinog 49(7):630–640PubMedGoogle Scholar
  62. Lopes GL, de Souza JA, Barrios C (2013) Access to cancer medication in low and middle-income countries. Nat Rev Clin Oncol 10(6):314–322CrossRefGoogle Scholar
  63. Ma R (2008) Apoptosis of breast and colon cancer cells by inhibitors of glycolipid and DNA biosynthesis. PhD Thesis, University of Notre Dame, Notre Dame, IN: 1–271Google Scholar
  64. Ma R, Koulov A, Moulton C, Basu M, Banerjee S, Goodson H, Basu S (2004) Apoptosis of human breast carcinoma cells in the presence of Disialosyl gangliosides: II. Treatment of SKBR3 cells with GD3 and GD1b gangliosides. Glycoconj J 20(5):319–330CrossRefGoogle Scholar
  65. Ma R, Decker N, Matthew AV, Moskal JR, Bergdorf J, Johnson J, Basu M, Banerjee S, Basu S (2009) Post-translational and transcriptional regulation of glycolipid glycosyltransferase genes in apoptotic breast carcinoma cells: VII. After treatment with l-PPMP. Glycoconj J 26:647–661CrossRefGoogle Scholar
  66. Ma R, Hopp EA, Decker M, Loucks A, Johnson JP, Moskal JR, Basu M, Banerjee S, Basu S (2011) VIII. Regulation of glycosyltranferase genes in apoptotic breast cancer cells by inhibitors of glycolipid and DNA biosynthesis. In: Wu A (ed) Immunology of complex carbohydrates: advances in experimental biology, vol 705. p 621–642Google Scholar
  67. Mao S, Gao C, Lo CH, Wirsching P, Wong CH, Janda KD (1999) Phage-display library selection of high-affinity human single-chain antibodies to tumor associated carbohydrate antigebv sialyl LewisX and Lewis Z. Proc Natl Acad Sci U S A 96(12):6953–6958CrossRefPubMedPubMedCentralGoogle Scholar
  68. Marchetti M, Russo L, Balducci D, Falanga A (2011) All trans-retinoic acid modulates the procoagulant activity of human breast cancer cells. Thromb Res 128(4):368–7CrossRefGoogle Scholar
  69. Masserini M, Palestini P, Pitto M, Chigorno V, Sonnino S (2002) Preparation and use for the study of sphingolipid segregation in membrane model systems. In: Basu SC, Basu M (eds) Liposome methods and protocols. Humana, Totowa, pp 17–27CrossRefGoogle Scholar
  70. Matsumoto S, Imaeda Y, Umemoto S, Kobayashi K, Suzuki H, Okamoto T (2002) Cimetidine increases survival of colorectal cancer patients with high levels of sialyl Lewis X and sialyl Lewis A epitope expression on tumor cells. Br J Cancer 86(2):161–167CrossRefPubMedPubMedCentralGoogle Scholar
  71. Mitoma J, Petryniak B, Hiraoka N, Yeh JC, Lowe JB, Fukuda M (2003) Extended core 1 and 2 branched O-glycans differently modulate sialyl Lewis X-type L-selectin ligand activity. J Biol Chem 276(11):9953–9961CrossRefGoogle Scholar
  72. Moskal JR, Gardner DA, Basu S (1974) Changes in glycolipid glycosyltransferases and glutamate decarboxylase and their relationship to differentiation in neuroblastoma cells. Biochem Biophys Res Commun 61:751–758CrossRefPubMedPubMedCentralGoogle Scholar
  73. Mullauer EB, van Bloois L, Ten Daalhusin JB, Brink MS, Storm G, Medema JP, Schiffelers RM, Kesseler JH (2011) Betulinic acid delivered in liposomes reduces growth of human lung and colon cancers in mice without causing systemic toxicity. Anticancer Drugs 22(3):223–233CrossRefPubMedPubMedCentralGoogle Scholar
  74. Nohara K, Wang F, Spiegel S (1998) Glycosphingolipid composition of MDA-MB-231 and MCF-7 human breast cancer cells. Breast Cancer Res Treat 48(2):149–157CrossRefPubMedPubMedCentralGoogle Scholar
  75. Oskouian B, Saba JD (2010) Cancer treatment strategies targeting sphingolipid metabolism. Adv Exp Med Biol 688:185–205CrossRefPubMedPubMedCentralGoogle Scholar
  76. Patel VA, Lee DJ, Longacre-Antoni A, Feng L, Lieberthal W, Rauch J, Ucker DS, Levine JS (2009) Apoptotic and necrotic cells as sentinels of local tissue stress and inflammation: response pathways initiated in nearby viable cells. Autoimmunity 42(4):317–3921CrossRefPubMedPubMedCentralGoogle Scholar
  77. Patil JB, Kim J, Jayprakasha GK (2010) Berbarine induces apoptosis in breast cancer cells (MCF-7) through mitochondrial-dependent pathway. Eur J Pharmacol 645(1–3):70–78CrossRefPubMedPubMedCentralGoogle Scholar
  78. Pecheur E-I Hoekstra D (2002) Peptide-induced fusion of liposomes. In: Basu SC, Basu M (eds) Liposome methods and protocols. Humana, Totowa, pp 31–48CrossRefGoogle Scholar
  79. Presper KA, Basu M, Basu S (1978) Biosynthesis in vitro of fucose-containing glycosphingolipids in human neuroblastoma IMR-32 cells. Proc Natl Acad Sci U S A 75:289–293CrossRefPubMedPubMedCentralGoogle Scholar
  80. Radhakrishnan P, Beum PV, Tan S, Cheng PW (2007) Butyrate induces sLeX synthesis by stimulation of selective glycosyltransferase genes. Biochem Biophys Res Commun 359(3):457–462CrossRefPubMedPubMedCentralGoogle Scholar
  81. Radin NS (1999) Chemotherapy by slowing glucosphingolipid synthesis. Biochem Pharmacol 57(6):0589–0595CrossRefGoogle Scholar
  82. Schuldes H, Schleicher D, Mayer G, Markus BH, Cinati J, Blaheta RA (2003) Bonding of gastrointestinal tumor cells in endothelial E- and P-selectin adhesion receptors leads to transient down regulation of sLeX ligands in vitro. Int J Colorectal Dis 18(4):292–299CrossRefGoogle Scholar
  83. Shirue VS, Henson KA, Schnaar RL, Nimrichter L, Burdick MM (2011) Gangliosides expressed on breast cancer cells are E-selectin ligands. Biochem Biophys Res Commun 406(3):423–429CrossRefGoogle Scholar
  84. Silva Z, Tong Z, Cabral MG, Martins C, Castro R, Reis C, Trindade H, Konstantopoulos K, Videira PA (2011) Sialyl LewisX-dependent binding of human monocyte-derived dendritic cells to selectins. Biochem Biophys Res Commun 409(3):459–464CrossRefPubMedPubMedCentralGoogle Scholar
  85. Sugiarto G, Lau K, Ya H, Vuong S, Thon V, Li Y, Huang S, Chen X (2011) Cloning and charaxteruzation of a viral alpha2,3 Sialyltransferase (vSTGal-1) for the synthesis of sialyl LewisX. Glycobiology 21(3):387–396CrossRefGoogle Scholar
  86. Ullah MF, Ahmad A, Zubair H, Khan HY, Wang Z, Sarkar FH, Hadi SM (2011) Soy isoflavone genisten induces cell death in breast cancer cells through mobilization of endogenous copper ions and generation of reactive oxygen species. Mol Nutr Food Res 55(4):553–559CrossRefGoogle Scholar
  87. Weedon D, Searle J, Kerr JF (1979) Apoptosis. Its nature and implications for dermatopathology. Am J Dermatopathol 1(2):133–144CrossRefPubMedPubMedCentralGoogle Scholar
  88. Wesierska J, Hacki S, Zulehner N, Maurer M, Komina O (2011a) Reconstitution of human MCF-7 breast cancer cells with Caspase-3 does not sensitize them to action of CDK inhibitor. J Cell Biochem 112(1):273–288CrossRefGoogle Scholar
  89. Wesierska J, Hacki S, Zulehner N, Maurer M, Komina O (2011b) Reconstitution of human MCF-7 breast cancer cells with Caspase-3 does not sensitize them to action of CDK inhibitor. J Cell Biochem 112(1):273–288CrossRefGoogle Scholar
  90. Yeung KK, Moskal J, Chien JL, Gardner D, Basu S (1974) Biosynthesis of globoside and Forssman related glycosphingolipid in mouse adrenal Y-1 tumor cells. Biochem Biophys Res Commun 59:252–260CrossRefGoogle Scholar
  91. Yuan J, He Z, Wu J, Lin Y, Zhu X (2011) A novel adriamycin analogue derived from marinemicrobes induces apoptosis by blocking Akt activation in human breast cancer cells. Mol Med Rep 4(2):261–265PubMedGoogle Scholar
  92. Zajdel J, Zajdel R (2013) Brand-name drug, generic drug, orphan drug. Pharmacological therapy with biosimilar drugs: provision of due diligence in the treatment process. Contemp Oncol (Pozn) 17(6):477–483Google Scholar
  93. Zhang B, Chen H, Yao X, Cong W, Wu M (2000) E-selextin and its ligand-sLeX in metastasis of hepatocekkukar carcinoma. Zhonghua Wai Ke Za Zhi 38(7):534–536 (Chinese)PubMedGoogle Scholar
  94. Zhang BH, Chen H, Yao XP, Cong WM, Wu MC (2002) E-selectun and its ligand-sLeX in the metastasis of heptacellular carcinoma. Hepatobiliary Pancreat Dis Int 1(1):L80–L82Google Scholar
  95. Zhang N, Kong X, Yan YC, Yang Q (2010) Huair aqueous extract inhibits proliferation of breast cancer cells by inducing apoptosis. Cancer Sci 101(11):2375–2383CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Subhash Basu
    • 1
    Email author
  • Rui Ma
    • 2
  • Joseph R. Moskal
    • 3
  • Manju Basu
    • 1
  1. 1.Department of Chemistry and Biochemistry and Cancer Drug Delivery Research FoundationUniversity of Notre DameNotre DameUSA
  2. 2.Diagnostic DivisionSiemens CorporationShanghaiChina
  3. 3.The Falk Center for Molecular TherapeuticsNorthwestern UniversityEvanstonUSA

Personalised recommendations