Advertisement

Robust and Accurate Non-parametric Estimation of Reflectance Using Basis Decomposition and Correction Functions

  • Tobias Nöll
  • Johannes Köhler
  • Didier Stricker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8690)

Abstract

A common approach to non-parametric BRDF estimation is the approximation of the sparsely measured input using basis decomposition. In this paper we greatly improve the fitting accuracy of such methods by iteratively applying a novel correction function to an initial estimate. We also introduce a basis to efficiently represent such a function. Based on this general concept we propose an iterative algorithm that is able to explicitly identify and treat outliers in the input data. Our method is invariant to different error metrics which alleviates the error-prone choice of an appropriate one for the given input. We evaluate our method based on a large set of experiments generated from 100 real-world BRDFs and 16 newly measured materials. The experiments show that our method outperforms other evaluated state-of-the-art basis decomposition methods by an order of magnitude in the perceptual sense for outlier ratios up to 40%.

Keywords

Non-parametric BRDF estimation reflectance basis decompostion correction function error metric sparse data outliers 

Supplementary material

978-3-319-10605-2_25_MOESM1_ESM.pdf (12 mb)
Electronic Supplementary Material (PDF 12,240 KB)

References

  1. 1.
    Ali, M.A., Sato, I., Okabe, T., Sato, Y.: Toward efficient acquisition of bRDFs with fewer samples. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part IV. LNCS, vol. 7727, pp. 54–67. Springer, Heidelberg (2013), http://dx.doi.org/10.1007/978-3-642-37447-0_5 CrossRefGoogle Scholar
  2. 2.
    Ashikhmin, M., Shirley, P.: An anisotropic phong brdf model. J. Graph. Tools 5(2), 25–32 (2000), http://dx.doi.org/10.1080/10867651.2000.10487522 CrossRefGoogle Scholar
  3. 3.
    Blinn, J.F.: Models of light reflection for computer synthesized pictures. In: Proceedings of the 4th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1977, pp. 192–198. ACM, New York (1977), http://doi.acm.org/10.1145/563858.563893 Google Scholar
  4. 4.
    Cook, R.L., Torrance, K.E.: A reflectance model for computer graphics. ACM Trans. Graph. 1(1), 7–24 (1982), http://doi.acm.org/10.1145/357290.357293 CrossRefGoogle Scholar
  5. 5.
    Fairchild, M.D.: Color appearance models. John Wiley & Sons (2013)Google Scholar
  6. 6.
    Ferreau, H.J.: qpOASES Library for Online Active Set Strategy, http://set.kuleuven.be/optec/Software/qpOASES-OPTEC/ (accessed: February 13, 2014)
  7. 7.
    Ferreau, H.J., Bock, H.G., Diehl, M.: An online active set strategy to overcome the limitations of explicit mpc. International Journal of Robust and Nonlinear Control 18(8), 816–830 (2008), http://dx.doi.org/10.1002/rnc.1251 CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Fleming, R.W., Dror, R.O., Adelson, E.H.: Real-world illumination and the perception of surface reflectance properties. Journal of Vision 3(5), 3 (2003)CrossRefGoogle Scholar
  9. 9.
    Fores, A., Ferwerda, J., Gu, J.: Toward a perceptually based metric for brdf modeling. In: Twentieth Color and Imaging Conference, Los Angeles, California, USA, pp. 142–148 (November 2012)Google Scholar
  10. 10.
    Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1996, pp. 43–54. ACM, New York (1996), http://doi.acm.org/10.1145/237170.237200 CrossRefGoogle Scholar
  11. 11.
    He, X.D., Torrance, K.E., Sillion, F.X., Greenberg, D.P.: A comprehensive physical model for light reflection. In: Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1991, pp. 175–186. ACM, New York (1991), http://doi.acm.org/10.1145/122718.122738 Google Scholar
  12. 12.
    Holroyd, M., Lawrence, J., Zickler, T.: A coaxial optical scanner for synchronous acquisition of 3d geometry and surface reflectance. ACM Trans. Graph. 29, 99:1–99:12 (2010)Google Scholar
  13. 13.
    Koenderink, J.J., Doorn, A.J.V.: Phenomenological description of bidirectional surface reflection. JOSA A 15, 2903–2912 (1998)CrossRefGoogle Scholar
  14. 14.
    Köhler, J., Nöll, T., Reis, G., Stricker, D.: A full-spherical device for simultaneous geometry and reflectance acquisition. In: 2013 IEEE Workshop on Applications of Computer Vision (WACV), pp. 355–362 (2013)Google Scholar
  15. 15.
    Lafortune, E.P., Foo, S.C., Torrance, K.E., Greenberg, D.P.: Non-linear approximation of reflectance functions. In: SIGGRAPH, pp. 117–126 (1997), http://dblp.uni-trier.de/db/conf/siggraph/siggraph1997.html#LafortuneFTG97
  16. 16.
    Lalonde, P., Fournier, A.: A wavelet representation of reflectance functions. IEEE Transactions on Visualization and Computer Graphics 3(4), 329–336 (1997), http://dx.doi.org/10.1109/2945.646236 CrossRefGoogle Scholar
  17. 17.
    Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., Rusinkiewicz, S.: Inverse shade trees for non-parametric material representation and editing. In: ACM SIGGRAPH 2006 Papers, SIGGRAPH 2006, pp. 735–745. ACM, New York (2006), http://doi.acm.org/10.1145/1179352.1141949 Google Scholar
  18. 18.
    Marschner, S.R., Westin, S.H., Lafortune, E.P.F., Torrance, K.E.: Image-based bidirectional reflectance distribution function measurement. Applied Optics 39, 2592–2600 (2000)CrossRefGoogle Scholar
  19. 19.
    Matusik, W., Pfister, H., Brand, M., McMillan, L.: A data-driven reflectance model. In: ACM SIGGRAPH 2003 Papers, SIGGRAPH 2003, pp. 759–769. ACM, New York (2003), http://doi.acm.org/10.1145/1201775.882343 Google Scholar
  20. 20.
    Matusik, W., Pfister, H., Brand, M., McMillan, L.: Efficient isotropic brdf measurement. In: Proceedings of the 14th Eurographics Workshop on Rendering, EGRW 2003, pp. 241–247. Eurographics Association, Aire-la-Ville (2003), http://dl.acm.org/citation.cfm?id=882404.882439 Google Scholar
  21. 21.
    Ngan, A., Durand, F., Matusik, W.: Experimental analysis of brdf models. In: Proceedings of the Sixteenth Eurographics Conference on Rendering Techniques, EGSR 2005, pp. 117–126. Eurographics Association, Aire-la-Ville (2005), http://dx.doi.org/10.2312/EGWR/EGSR05/117-126 Google Scholar
  22. 22.
    Nicodemus, F.E.: Directional reflectance and emissivity of an opaque surface. Appl. Opt. 4(7), 767–775 (1965), http://ao.osa.org/abstract.cfm?URI=ao-4-7-767 CrossRefGoogle Scholar
  23. 23.
    Nishino, K.: Directional statistics brdf model. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 476–483 (September 2009)Google Scholar
  24. 24.
    Pacanowski, R., Salazar-Celis, O., Schlick, C., Granier, X., Pierre, P., Annie, C.: Rational BRDF. IEEE Transactions on Visualization and Computer Graphics 18(11), 1824–1835 (2012), http://hal.inria.fr/hal-00678885 CrossRefGoogle Scholar
  25. 25.
    Ramamoorthi, R., Hanrahan, P.: A signal-processing framework for inverse rendering. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2001, pp. 117–128. ACM, New York (2001), http://doi.acm.org/10.1145/383259.383271 Google Scholar
  26. 26.
    Ren, P., Wang, J., Snyder, J., Tong, X., Guo, B.: Pocket reflectometry. In: ACM SIGGRAPH 2011 Papers, SIGGRAPH 2011, pp. 45:1–45:10. ACM, New York (2011), http://doi.acm.org/10.1145/1964921.1964940
  27. 27.
    Rusinkiewicz, S.: A new change of variables for efficient brdf representation. In: Rendering Techniques, pp. 11–22 (1998)Google Scholar
  28. 28.
    Schlick, C.: An inexpensive brdf model for physically-based rendering. Comput. Graph. Forum 13(3), 233–246 (1994)CrossRefGoogle Scholar
  29. 29.
    Schröder, P., Sweldens, W.: Spherical wavelets: Efficiently representing functions on the sphere. In: Proceedings of the 22Nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1995, pp. 161–172. ACM, New York (1995), http://doi.acm.org/10.1145/218380.218439 CrossRefGoogle Scholar
  30. 30.
    Ward, G.J.: Measuring and modeling anisotropic reflection. In: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1992, pp. 265–272. ACM, New York (1992), http://doi.acm.org/10.1145/133994.134078 CrossRefGoogle Scholar
  31. 31.
    Weistroffer, R.P., Walcott, K.R., Humphreys, G., Lawrence, J.: Efficient basis decomposition for scattered reflectance data. In: Proceedings of the 18th Eurographics Conference on Rendering Techniques, EGSR 2007, pp. 207–218. Eurographics Association, Aire-la-Ville (2007), http://dx.doi.org/10.2312/EGWR/EGSR07/207-218 Google Scholar
  32. 32.
    Westin, S.H., Arvo, J.R., Torrance, K.E.: Predicting reflectance functions from complex surfaces. In: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1992, pp. 255–264. ACM, New York (1992), http://doi.acm.org/10.1145/133994.134075 CrossRefGoogle Scholar
  33. 33.
    Zickler, T., Enrique, S., Ramamoorthi, R., Belhumeur, P.: Reflectance sharing: Image-based rendering from a sparse set of images. In: Proceedings of the Sixteenth Eurographics Conference on Rendering Techniques, EGSR 2005, pp. 253–264. Eurographics Association, Aire-la-Ville (2005), http://dx.doi.org/10.2312/EGWR/EGSR05/253-264 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tobias Nöll
    • 1
    • 2
  • Johannes Köhler
    • 1
    • 2
  • Didier Stricker
    • 1
    • 2
  1. 1.German Research Center for Artificial IntelligenceKaiserslauternGermany
  2. 2.University of KaiserslauternGermany

Personalised recommendations