Advertisement

Metric-Based Pairwise and Multiple Image Registration

  • Qian Xie
  • Sebastian Kurtek
  • Eric Klassen
  • Gary E. Christensen
  • Anuj Srivastava
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8690)

Abstract

Registering pairs or groups of images is a widely-studied problem that has seen a variety of solutions in recent years. Most of these solutions are variational, using objective functions that should satisfy several basic and desired properties. In this paper, we pursue two additional properties – (1) invariance of objective function under identical warping of input images and (2) the objective function induces a proper metric on the set of equivalence classes of images – and motivate their importance. Then, a registration framework that satisfies these properties, using the L 2-norm between a novel representation of images, is introduced. Additionally, for multiple images, the induced metric enables us to compute a mean image, or a template, and perform joint registration. We demonstrate this framework using examples from a variety of image types and compare performances with some recent methods.

Keywords

metric-based registration elastic image deformation post-registration analysis mean image multiple registration 

References

  1. 1.
    Beg, M., Miller, M., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision 61, 139–157 (2005)CrossRefGoogle Scholar
  2. 2.
    Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6), 567–585 (1989)CrossRefzbMATHGoogle Scholar
  3. 3.
    Christensen, G., Johnson, H.: Consistent image registration. IEEE Transactions on Medical Imaging 20(7), 568–582 (2001)CrossRefGoogle Scholar
  4. 4.
    Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging 16(2), 187–198 (1997)CrossRefGoogle Scholar
  5. 5.
    Davies, R., Twining, C., Cootes, T., Waterton, J., Taylor, C.: A minimum description length approach to statistical shape modeling. IEEE Transactions on Medical Imaging 21(5), 525–537 (2002)CrossRefGoogle Scholar
  6. 6.
    Dupuis, P., Grenander, U.: Variational problems on flows of diffeomorphisms for image matching. Journal Quarterly of Applied Mathematics LVI (3), 587–600 (1998)Google Scholar
  7. 7.
    Eriksson, A., Astrom, K.: Bijective image registration using thin-plate splines. In: International Conference on Pattern Recognition, vol. 3, pp. 798–801 (2006)Google Scholar
  8. 8.
    Joshi, S., Davis, B., Jomier, B.M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. Neuroimage 23, 151–160 (2004)CrossRefGoogle Scholar
  9. 9.
    Kurtek, S., Klassen, E., Ding, Z., Jacobson, S., Jacobson, J., Avison, M., Srivastava, A.: Parameterization-invariant shape comparisons of anatomical surfaces. IEEE Transactions on Medical Imaging 30, 849–858 (2011)CrossRefGoogle Scholar
  10. 10.
    Kurtek, S., Klassen, E., Ding, Z., Srivastava, A.: A novel Riemannian framework for shape analysis of 3D objects. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1625–1632 (2010)Google Scholar
  11. 11.
    Kurtek, S., Srivastava, A., Klassen, E., Laga, H.: Landmark-guided elastic shape analysis of spherically-parameterized surfaces. In: Computer Graphics Forum (Proceedings of Eurographics 2013, vol. 32(2), pp. 429–438 (2013)Google Scholar
  12. 12.
    Lorenzen, P., Davis, B., Joshi, S.: Unbiased atlas formation via large deformations metric mapping. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 411–418. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Miller, M., Trouve, A., Younes, L.: On the metrics and Euler-Lagrange equations of computational anatomy. Annual Review of Biomedical Engineering 4, 375–405 (2002)CrossRefGoogle Scholar
  14. 14.
    Modat, M., Cardoso, M., Daga, P., Cash, D., Fox, N., Ourselin, S.: Inverse-consistent symmetric free form deformation. In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds.) WBIR 2012. LNCS, vol. 7359, pp. 79–88. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Modersitzki, J.: FAIR: Flexible Algorithms for Image Registration. Society for Industrial and Applied Mathematics (2009)Google Scholar
  16. 16.
    Szeliski, R., Coughlan, J.: Spline-based image registration. International Journal of Computer Vision 22(3), 199–218 (1997)CrossRefGoogle Scholar
  17. 17.
    Tagare, H., Groisser, D., Skrinjar, O.: Symmetric non-rigid registration: A geometric theory and some numerical techniques. Journal of Mathematical Imaging and Vision 34(1), 61–88 (2009)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Taquet, M., Macq, B., Warfield, S.: A generalized correlation coefficient: application to DTI and multi-fiber DTI. In: Mathematical Methods in Biomedical Image Analysis (2012)Google Scholar
  19. 19.
    Thirion, J.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Medical Image Analysis 2(3), 243–260 (1998)CrossRefGoogle Scholar
  20. 20.
    Trouve, A.: Diffeomorphisms groups and pattern matching in image analysis. International Journal of Computer Vision 28(3), 213–221 (1998)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Twining, C., Marsland, S., Taylor, C.: Groupwise non-rigid registration: The minimum description length approach. In: Proceedings of the British Machine Vision Converence (BMVC), vol. 1, pp. 417–426 (2004)Google Scholar
  22. 22.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage 45(suppl. 1), S61–S72 (2009)Google Scholar
  23. 23.
    Viola, P., Wells III, W.: Alignment by maximization of mutual information. In: Fifth International Conference on Computer Vision, pp. 16–23 (June 1995)Google Scholar
  24. 24.
    Xie, Q., Kurtek, S., Christensen, G., Ding, Z., Klassen, E., Srivastava, A.: A novel framework for metric-based image registration. In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds.) WBIR 2012. LNCS, vol. 7359, pp. 276–285. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Qian Xie
    • 1
  • Sebastian Kurtek
    • 2
  • Eric Klassen
    • 1
  • Gary E. Christensen
    • 3
  • Anuj Srivastava
    • 1
  1. 1.Florida State UniversityTallahasseeUnited States
  2. 2.Ohio State UniversityColumbusUnited States
  3. 3.University of IowaIowa CityUnited States

Personalised recommendations