Advertisement

A Pot of Gold: Rainbows as a Calibration Cue

  • Scott Workman
  • Radu Paul Mihail
  • Nathan Jacobs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8693)

Abstract

Rainbows are a natural cue for calibrating outdoor imagery. While ephemeral, they provide unique calibration cues because they are centered exactly opposite the sun and have an outer radius of 42 degrees. In this work, we define the geometry of a rainbow and describe minimal sets of constraints that are sufficient for estimating camera calibration. We present both semi-automatic and fully automatic methods to calibrate a camera using an image of a rainbow. To demonstrate our methods, we have collected a large database of rainbow images and use these to evaluate calibration accuracy and to create an empirical model of rainbow appearance. We show how this model can be used to edit rainbow appearance in natural images and how rainbow geometry, in conjunction with a horizon line and capture time, provides an estimate of camera location. While we focus on rainbows, many of the geometric properties and algorithms we present also apply to other solar-refractive phenomena, such as parhelion, often called sun dogs, and the 22 degree solar halo.

Keywords

Focal Length Camera Calibration Photometric Stereo Horizon Line Probabilistic Principal Component Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abrams, A., Hawley, C., Pless, R.: Heliometric stereo: Shape from sun position. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 357–370. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Ackermann, J., Langguth, F., Fuhrmann, S., Goesele, M.: Photometric stereo for outdoor webcams. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)Google Scholar
  3. 3.
    Caprile, B., Torre, V.: Using vanishing points for camera calibration. International Journal of Computer Vision (1990)Google Scholar
  4. 4.
    Chen, Q.-a., Wu, H., Wada, T.: Camera calibration with two arbitrary coplanar circles. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 521–532. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Cox, M., Sridharan, S., Lucey, S., Cohn, J.: Least squares congealing for unsupervised alignment of images. In: IEEE Conference on Computer Vision and Pattern Recognition (2008)Google Scholar
  6. 6.
    Cozman, F., Krotkov, E.: Robot localization using a computer vision sextant. In: International Conference on Robotics and Automation (1995)Google Scholar
  7. 7.
    He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Transactions on Pattern Analysis and Machine Intelligence (2011)Google Scholar
  8. 8.
    Jacobs, N., Bies, B., Pless, R.: Using cloud shadows to infer scene structure and camera calibration. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)Google Scholar
  9. 9.
    Jacobs, N., Islam, M., Workman, S.: Cloud motion as a calibration cue. In: IEEE Conference on Computer Vision and Pattern Recognition (2013)Google Scholar
  10. 10.
    Jacobs, N., Miskell, K., Pless, R.: Webcam geo-localization using aggregate light levels. In: IEEE Workshop on Applications of Computer Vision (2011)Google Scholar
  11. 11.
    Jacobs, N., Roman, N., Pless, R.: Toward fully automatic geo-location and geo-orientation of static outdoor cameras. In: IEEE Workshop on Applications of Computer Vision (2008)Google Scholar
  12. 12.
    Jacobs, N., Satkin, S., Roman, N., Speyer, R., Pless, R.: Geolocating static cameras. In: IEEE International Conference on Computer Vision (2007)Google Scholar
  13. 13.
    Junejo, I.N., Foroosh, H.: Estimating geo-temporal location of stationary cameras using shadow trajectories. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 318–331. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Lalonde, J.-F., Narasimhan, S.G., Efros, A.A.: What does the sky tell us about the camera? In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 354–367. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Lalonde, J.F., Efros, A.A., Narasimhan, S.G.: Webcam clip art: Appearance and illuminant transfer from time-lapse sequences. ACM Transactions on Graphics (2009)Google Scholar
  16. 16.
    Lalonde, J.F., Narasimhan, S.G., Efros, A.A.: Camera parameters estimation from hand-labelled sun positions in image sequences. Tech. rep., CMU Robotics Institute (2008)Google Scholar
  17. 17.
    Lalonde, J.F., Narasimhan, S.G., Efros, A.A.: What do the sun and the sky tell us about the camera? International Journal of Computer Vision (2010)Google Scholar
  18. 18.
    Lee, R.L.: Mie theory, airy theory, and the natural rainbow. Applied Optics (1998)Google Scholar
  19. 19.
    Li, Y., Snavely, N., Huttenlocher, D., Fua, P.: Worldwide pose estimation using 3D point clouds. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 15–29. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Lu, F., Cao, X., Shen, Y., Foroosh, H.: Camera calibration from two shadow trajectories. In: International Conference on Pattern Recognition (2006)Google Scholar
  21. 21.
    McCartney, E.J., Hall, F.F.: Optics of the atmosphere: Scattering by molecules and particles. Physics Today (1977)Google Scholar
  22. 22.
    Nelder, J.A., Mead, R.: A simplex method for function minimization. The Computer Journal (1965)Google Scholar
  23. 23.
    Nussenzveig, H.M.: The theory of the rainbow. Scientific American (1977)Google Scholar
  24. 24.
    Peng, K.C., Chen, T.: Incorporating cloud distribution in sky representation. In: IEEE International Conference on Computer Vision (2013)Google Scholar
  25. 25.
    Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Transactions on Graphics, TOG (2003)Google Scholar
  26. 26.
    Reda, I., Andreas, A.: Solar position algorithm for solar radiation applications. Solar energy (2004)Google Scholar
  27. 27.
    Sadeghi, I., Munoz, A., Laven, P., Jarosz, W., Seron, F., Gutierrez, D., Jensen, H.W.: Physically-based simulation of rainbows. ACM Press, New York (2012)Google Scholar
  28. 28.
    Sandnes, F.E.: Determining the geographical location of image scenes based on object shadow lengths. Journal of Signal Processing Systems (2011)Google Scholar
  29. 29.
    Shen, L., Tan, P.: Photometric stereo and weather estimation using internet images. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)Google Scholar
  30. 30.
    Sunkavalli, K., Romeiro, F., Matusik, W., Zickler, T., Pfister, H.: What do color changes reveal about an outdoor scene? In: IEEE Conference on Computer Vision and Pattern Recognition (2008)Google Scholar
  31. 31.
    Sunkavalli, K., Matusik, W., Pfister, H., Rusinkiewicz, S.: Factored time-lapse video. ACM Transactions on Graphics, SIGGRAPH (2007)Google Scholar
  32. 32.
    Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) (1999)Google Scholar
  33. 33.
    Wang, L., Kang, S.B., Shum, H.Y., Xu, G.: Error analysis of pure rotation-based self-calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence (2004)Google Scholar
  34. 34.
    Wu, L., Cao, X., Foroosh, H.: Camera calibration and geo-location estimation from two shadow trajectories. Computer Vision and Image Understanding (2010)Google Scholar
  35. 35.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Scott Workman
    • 1
  • Radu Paul Mihail
    • 1
  • Nathan Jacobs
    • 1
  1. 1.Department of Computer ScienceUniversity of KentuckyUSA

Personalised recommendations