Advertisement

Geodesic Object Proposals

  • Philipp Krähenbühl
  • Vladlen Koltun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8693)

Abstract

We present an approach for identifying a set of candidate objects in a given image. This set of candidates can be used for object recognition, segmentation, and other object-based image parsing tasks. To generate the proposals, we identify critical level sets in geodesic distance transforms computed for seeds placed in the image. The seeds are placed by specially trained classifiers that are optimized to discover objects. Experiments demonstrate that the presented approach achieves significantly higher accuracy than alternative approaches, at a fraction of the computational cost.

Keywords

perceptual organization grouping 

References

  1. 1.
    Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. PAMI 34(11) (2012)Google Scholar
  2. 2.
    Bai, X., Sapiro, G.: Geodesic matting: A framework for fast interactive image and video segmentation and matting. IJCV 82(2) (2009)Google Scholar
  3. 3.
    Carreira, J., Caseiro, R., Batista, J., Sminchisescu, C.: Semantic segmentation with second-order pooling. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 430–443. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Carreira, J., Li, F., Sminchisescu, C.: Object recognition by sequential figure-ground ranking. IJCV 98(3) (2012)Google Scholar
  5. 5.
    Carreira, J., Sminchisescu, C.: CPMC: Automatic object segmentation using constrained parametric min-cuts. PAMI 34(7) (2012)Google Scholar
  6. 6.
    Criminisi, A., Sharp, T., Rother, C., Pérez, P.: Geodesic image and video editing. ACM Trans. Graph. 29(5) (2010)Google Scholar
  7. 7.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)Google Scholar
  8. 8.
    Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: ICCV (2013)Google Scholar
  9. 9.
    Endres, I., Hoiem, D.: Category-independent object proposals with diverse ranking. PAMI 36(2) (2014)Google Scholar
  10. 10.
    Everingham, M., Van Gool, L.J., Williams, C.K.I., Winn, J.M., Zisserman, A.: The Pascal Visual Object Classes (VOC) challenge. IJCV 88(2) (2010)Google Scholar
  11. 11.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D.A., Ramanan, D.: Object detection with discriminatively trained part-based models. PAMI 32(9) (2010)Google Scholar
  12. 12.
    Gu, C., Lim, J.J., Arbelaez, P., Malik, J.: Recognition using regions. In: CVPR (2009)Google Scholar
  13. 13.
    Joachims, T.: Optimizing search engines using clickthrough data. In: KDD (2002)Google Scholar
  14. 14.
    Lim, J.J., Zitnick, C.L., Dollár, P.: Sketch tokens: A learned mid-level representation for contour and object detection. In: CVPR (2013)Google Scholar
  15. 15.
    Malisiewicz, T., Efros, A.A.: Improving spatial support for objects via multiple segmentations. In: BMVC (2007)Google Scholar
  16. 16.
    Manén, S., Guillaumin, M., Gool, L.V.: Prime object proposals with randomized Prim’s algorithm. In: ICCV (2013)Google Scholar
  17. 17.
    Perazzi, F., Krähenbühl, P., Pritch, Y., Hornung, A.: Saliency filters: Contrast based filtering for salient region detection. In: CVPR (2012)Google Scholar
  18. 18.
    Price, B.L., Morse, B.S., Cohen, S.: Geodesic graph cut for interactive image segmentation. In: CVPR (2010)Google Scholar
  19. 19.
    Sinop, A.K., Grady, L.: A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm. In: ICCV (2007)Google Scholar
  20. 20.
    Toivanen, P.J.: New geodesic distance transforms for gray-scale images. Pattern Recognition Letters 17(5) (1996)Google Scholar
  21. 21.
    Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition. IJCV 104(2) (2013)Google Scholar
  22. 22.
    Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In: CVPR (2001)Google Scholar
  23. 23.
    Yatziv, L., Bartesaghi, A., Sapiro, G.: O(n) implementation of the fast marching algorithm. J. Comput. Physics 212(2) (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Philipp Krähenbühl
    • 1
  • Vladlen Koltun
    • 2
  1. 1.Stanford UniversityUSA
  2. 2.Adobe ResearchUSA

Personalised recommendations