Pseudo-bound Optimization for Binary Energies

  • Meng Tang
  • Ismail Ben Ayed
  • Yuri Boykov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8693)


High-order and non-submodular pairwise energies are important for image segmentation, surface matching, deconvolution, tracking and other computer vision problems. Minimization of such energies is generally NP-hard. One standard approximation approach is to optimize an auxiliary function - an upper bound of the original energy across the entire solution space. This bound must be amenable to fast global solvers. Ideally, it should also closely approximate the original functional, but it is very difficult to find such upper bounds in practice.

Our main idea is to relax the upper-bound condition for an auxiliary function and to replace it with a family of pseudo-bounds, which can better approximate the original energy. We use fast polynomial parametric maxflow approach to explore all global minima for our family of submodular pseudo-bounds. The best solution is guaranteed to decrease the original energy because the family includes at least one auxiliary function. Our Pseudo-Bound Cuts algorithm improves the state-of-the-art in many applications: appearance entropy minimization, target distribution matching, curvature regularization, image deconvolution and interactive segmentation.


Binary energy minimization high-order and non-submodular functions auxiliary functions parametric maxflow pseudo-bounds 


  1. 1.
    An, L.T.H., Tao, P.D., Canh, N.N., Thoai, N.V.: Dc programming techniques for solving a class of nonlinear bilevel programs. J. Global Optimization 44(3), 313–337 (2009)Google Scholar
  2. 2.
    Ben Ayed, I., Chen, H.M., Punithakumar, K., Ross, I., Li, S.: Graph cut segmentation with a global constraint: Recovering region distribution via a bound of the bhattacharyya measure. In: CVPR, pp. 3288–3295 (2010)Google Scholar
  3. 3.
    Ben Ayed, I., Gorelick, L., Boykov, Y.: Auxiliary cuts for general classes of higher order functionals. In: IEEE Conference on Computer Vision and Pattern Recognition (2013)Google Scholar
  4. 4.
    Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete Applied Mathematics 123, 2002 (2001)Google Scholar
  5. 5.
    Boykov, Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: ICCV, vol. I, pp. 105–112 (July 2001)Google Scholar
  6. 6.
    Delong, A., Osokin, A., Isack, H., Boykov, Y.: Fast approximate energy minimization with label costs. International Journal of Computer Vision 96, 1–27 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Eisner, M.J., Severance, D.G.: Mathematical techniques for efficient record segmentation in large shared databases. J. ACM 23(4), 619–635 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    El-Zehiry, N., Grady, L.: Fast global optimization of curvature. In: Proc. of CVPR 2010. IEEE Computer Society. IEEE (June 2010)Google Scholar
  9. 9.
    Fashing, M., Tomasi, C.: Mean shift is a bound optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 471–474 (2005)CrossRefGoogle Scholar
  10. 10.
    Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Gorelick, L., Boykov, Y., Veksler, O., Ayed, I.B., Delong, A.: Submodularization for binary pairwise energies. In: IEEE conference on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio (June 2014)Google Scholar
  12. 12.
    Gorelick, L., Schmidt, F.R., Boykov, Y.: Fast trust region for segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, Oregon, pp. 1714–1721(June 2013)Google Scholar
  13. 13.
    Gould, S.: Max-margin learning for lower linear envelope potentials in binary markov random fields. In: ICML (2011)Google Scholar
  14. 14.
    Hochbaum, D.S.: Polynomial time algorithms for ratio regions and a variant of normalized cut. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 889–898 (2010)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Jiang, H.: Linear solution to scale invariant global figure ground separation. In: CVPR. pp. 678–685 (2012)Google Scholar
  16. 16.
    Kappes, J.H., Andres, B., Hamprecht, F.A., Schnorr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B.X., Lellmann, J., Komodakis, N., Rother, C.: A comparative study of modern inference techniques for discrete energy minimization problem. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1328–1335 (2013)Google Scholar
  17. 17.
    Kim, J., Kolmogorov, V., Zabih, R.: Visual correspondence using energy minimization and mutual information. In: Int. Conf. on Comp. Vision (ICCV), vol. 2, pp. 1033–1040 (October 2003)Google Scholar
  18. 18.
    Kohli, P., Ladický, L., Torr, P.H.: Robust higher order potentials for enforcing label consistency. Int. J. Comput. Vision 82(3), 302–324 (2009)CrossRefGoogle Scholar
  19. 19.
    Kolmogorov, V., Schoenemann, T.: Generalized sequential tree-reweighted message pass. In: arXiv:1205.6352 (2012)Google Scholar
  20. 20.
    Kolmogorov, V., Boykov, Y., Rother, C.: Applications of parametric maxflow in computer vision. In: IEEE International Conference on Computer Vision (2007)Google Scholar
  21. 21.
    Kolmogorov, V., Rother, C.: Minimizing non-submodular functions with graph cuts - a review. IEEE transactions on Pattern Analysis and Machine Intelligence 29(7), 1274–1279 (July 2007)Google Scholar
  22. 22.
    Lange, K., Hunter, D.R., Yang, I.: Optimization transfer using surrogate objective functions. Journal of Computational and Graphical Statistics 9(1), 1–20 (2000)Google Scholar
  23. 23.
    Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS, pp. 556–562 (2000)Google Scholar
  24. 24.
    Leordeanu, M., Hebert, M., Sukthankar, R.: An integer projected fixed point method for graph matching and map inference. In: NIPS, pp. 1114–1122 (2009)Google Scholar
  25. 25.
    Li, T., Ma, S., Ogihara, M.: Entropy-based criterion in categorical clustering. In: Proc. of Intl. Conf. on Machine Learning (ICML), pp. 536–543 (2004)Google Scholar
  26. 26.
    Mukherjee, L., Singh, V., Dyer, C.R.: Half-integrality based algorithms for cosegmentation of images. In: CVPR. pp. 2028–2035 (2009)Google Scholar
  27. 27.
    Narasimhan, M., Bilmes, J.A.: A submodular-supermodular procedure with applications to discriminative structure learning. In: UAI, pp. 404–412 (2005)Google Scholar
  28. 28.
    Nieuwenhuis, C., Toeppe, E., Gorelick, L., Veksler, O., Boykov, Y.: Efficient squared curvature. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio (June 2014)Google Scholar
  29. 29.
    Pham, V.Q., Takahashi, K., Naemura, T.: Foreground-background segmentation using iterated distribution matching. In: CVPR. pp. 2113–2120 (2011)Google Scholar
  30. 30.
    Rother, C., Kolmogorov, V., Lempitsky, V., Szummer, M.: Optimizing binary mrfs via extended roof duality. In: IEEE CVPR (2007)Google Scholar
  31. 31.
    Rother, C., Minka, T.P., Blake, A., Kolmogorov, V.: Cosegmentation of image pairs by histogram matching - incorporating a global constraint into mrfs. In: CVPR. pp. 993–1000 (2006)Google Scholar
  32. 32.
    Rother, C., Kolmogorov, V., Blake, A.: Grabcut - interactive foreground extraction using iterated graph cuts. In: ACM Tran. on Graphics, SIGGRAPH (2004)Google Scholar
  33. 33.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)Google Scholar
  34. 34.
    Shotton, J., Sharp, T., Kohli, P., Nowozin, S., Winn, J., Criminisi, A.: Decision jungles: Compact and rich models for classification. In: Advances in Neural Information Processing Systems (NIPS), pp. 234–242 (2013)Google Scholar
  35. 35.
    Tang, M., Gorelick, L., Veksler, O., Boykov, Y.: Grabcut in one cut. In: International Conference on Computer Vision (ICCV), Sydney, Australia (2013)Google Scholar
  36. 36.
    Vicente, S., Kolmogorov, V., Rother, C.: Joint optimization of segmentation and appearance models. In: IEEE ICCV (2009)Google Scholar
  37. 37.
    Woodford, O.J., Rother, C., Kolmogorov, V.: A global perspective on map inference for low-level vision. In: ICCV, pp. 2319–2326 (2009)Google Scholar
  38. 38.
    Yuan, Y.: A review of trust region algorithms for optimization. In: Proceedings of the Fourth International Congress on Industrial and Applied Mathematics, ICIAM (1999)Google Scholar
  39. 39.
    Zhang, Z., Kwok, J.T., Yeung, D.Y.: Surrogate maximization/minimization algorithms and extensions. Machine Learning 69, 1–33 (2007)Google Scholar
  40. 40.
    Zhu, S.C., Yuille, A.: Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Transactions on PAMI 18(9), 884–900 (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Meng Tang
    • 1
  • Ismail Ben Ayed
    • 1
    • 2
  • Yuri Boykov
    • 1
  1. 1.University of Western OntarioCanada
  2. 2.GE HealthcareCanada

Personalised recommendations