Advertisement

Principal Component Regression Predicts Functional Responses across Individuals

  • Bertrand Thirion
  • Gaël Varoquaux
  • Olivier Grisel
  • Cyril Poupon
  • Philippe Pinel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)

Abstract

Inter-subject variability is a major hurdle for neuroimaging group-level inference, as it creates complex image patterns that are not captured by standard analysis models and jeopardizes the sensitivity of statistical procedures. A solution to this problem is to model random subjects effects by using the redundant information conveyed by multiple imaging contrasts. In this paper, we introduce a novel analysis framework, where we estimate the amount of variance that is fit by a random effects subspace learned on other images; we show that a principal component regression estimator outperforms other regression models and that it fits a significant proportion (10% to 25%) of the between-subject variability. This proves for the first time that the accumulation of contrasts in each individual can provide the basis for more sensitive neuroimaging group analyzes.

Keywords

fMRI principal components regression random effects 

References

  1. 1.
    Lashkari, D., Sridharan, R., Vul, E., Hsieh, P.-J., Kanwisher, N., Golland, P.: Search for patterns of functional specificity in the brain: a nonparametric hierarchical bayesian model for group fMRI data. Neuroimage 59(2), 1348–1368 (2012)CrossRefGoogle Scholar
  2. 2.
    Worsley, K.J., Liao, C.H., Aston, J., Petre, V., Duncan, G.H., Morales, F., Evans, A.C.: A general statistical analysis for fMRI data. Neuroimage 15(1), 1–15 (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Thirion, B., Pinel, P.: Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses. Neuroimage 35(1), 105–120 (2007)CrossRefGoogle Scholar
  4. 4.
    Saygin, Z.M., Osher, D.E., Koldewyn, K., Reynolds, G., Gabrieli, J.D.E., Saxe, R.R.: Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat. Neurosci. 15(2), 321–327 (2012)CrossRefGoogle Scholar
  5. 5.
    Ng, B., Abugharbieh, R., Varoquaux, G., Poline, J.B., Thirion, B.: Connectivity-informed fMRI activation detection. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 285–292. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Ye, D.H., Zikic, D., Glocker, B., Criminisi, A., Konukoglu, E.: Modality propagation: Coherent synthesis of subject-specific scans with data-driven regularization. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 606–613. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Dhillon, P.S., Foster, D.P., Kakade, S.M., Ungar, L.H.: A risk comparison of ordinary least squares vs ridge regression. Journal of Machine Learning Research 14, 1505–1511 (2013)MathSciNetGoogle Scholar
  8. 8.
    Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learning 63(1), 3–42 (2006)CrossRefGoogle Scholar
  9. 9.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)Google Scholar
  10. 10.
    Plaze, M., Paillère-Martinot, M.-L.: “where do auditory hallucinations come from?”–a brain morphometry study of schizophrenia patients with inner or outer space hallucinations. Schizophr. Bull. 37(1), 212–221 (2011)CrossRefGoogle Scholar
  11. 11.
    Van Essen, D.C., Glasser, M.F., Dierker, D.L., Harwell, J., Coalson, T.: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb. Cortex 22(10), 2241–2262 (2012)CrossRefzbMATHGoogle Scholar
  12. 12.
    Mesmoudi, S., Perlbarg, V., Rudrauf, D., Messe, A., Pinsard, B., Hasboun, D., Cioli, C., Marrelec, G., Toro, R., Benali, H., Burnod, Y.: Resting state networks’ corticotopy: the dual intertwined rings architecture. PLoS One 8(7), e67444 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Bertrand Thirion
    • 1
    • 2
  • Gaël Varoquaux
    • 1
    • 2
  • Olivier Grisel
    • 1
    • 2
  • Cyril Poupon
    • 1
    • 2
  • Philippe Pinel
    • 1
    • 2
  1. 1.Parietal teamINRIA Saclay-le-de-FrancePalaiseauFrance
  2. 2.NeurospinCEA, DSV, I2BMGif sur YvetteFrance

Personalised recommendations