Fast Part-Based Classification for Instrument Detection in Minimally Invasive Surgery

  • Raphael Sznitman
  • Carlos Becker
  • Pascal Fua
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)


Automatic visual detection of instruments in minimally invasive surgery (MIS) can significantly augment the procedure experience for operating clinicians. In this paper, we present a novel technique for detecting surgical instruments by constructing a robust and reliable instrument-part detector. While such detectors are typically slow to use, we introduce a novel early stopping scheme for multiclass ensemble classifiers which acts as a cascade and significantly reduces the computational requirements at test time, ultimately allowing it to run at framerate. We evaluate the effectiveness of our approach on instrument detection in retinal microsurgery and laparoscopic image sequences and demonstrate significant improvements in both accuracy and speed.


Random Forest Minimally Invasive Surgery Motion Blur Boost Regression Tree Instrument Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wolf, R., Duchateau, J., Cinquin, P., Voros, S.: 3D Tracking of Laparoscopic Instruments Using Statistical and Geometric Modeling. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 203–210. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Richa, R., Balicki, M., Meisner, E., Sznitman, R., Taylor, R., Hager, G.: Visual tracking of surgical tools for proximity detection in retinal surgery. In: Taylor, R.H., Yang, G.-Z. (eds.) IPCAI 2011. LNCS, vol. 6689, pp. 55–66. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Béjar Haro, B., Zappella, L., Vidal, R.: Surgical gesture classification from video data. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 34–41. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Allan, M., Ourselin, S., Thompson, S., Hawkes, D., Kelly, J., Stoyanov, D.: Toward detection and localization of instruments in minimally invasive surgery. IEEE Transactons on Biomedical Engineering 60, 1050–1058 (2013)CrossRefGoogle Scholar
  5. 5.
    Reiter, A., Allen, P.K., Zhao, T.: Feature classification for tracking articulated surgical tools. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 592–600. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Tonet, O., Ramesh, T., Megali, G., Dario, P.: Trackingendoscopicin- struments without localizer: Image analysis-based approach. Stud. Health Technol. Informat. 119, 544–549 (2006)Google Scholar
  7. 7.
    Burschka, D., et al.: Navigating inner space: 3-d assistance for minimally invasive surgery. Robotics and Autonomous Systems 52, 5–26 (2005)CrossRefGoogle Scholar
  8. 8.
    Pickering, M., Muhit, A., Scarwell, J.M., Smith, P.N.: A new multi-modal similarity measure for fast gradient-based 2d-3d image registration. In: Engineering in Medicine and Biology Society, pp. 5821–5824 (2009)Google Scholar
  9. 9.
    Pezzementi, Z., Voros, S., Hager, G.: Articulated object tracking by rendering consistent appearance parts. In: International Conference on Robotics and Automation, pp. 3940–3947 (2009)Google Scholar
  10. 10.
    Sznitman, R., Ali, K., Richa, R., Taylor, R.H., Hager, G.D., Fua, P.: Data-Driven Visual Tracking in Retinal Microsurgery. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 568–575. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer (2001)Google Scholar
  12. 12.
    Viola, P., Jones, M.: Robust Real-Time Face Detection 57(2), 137–154 (2004)Google Scholar
  13. 13.
    Šochman, J., Matas, J.: Waldboost - Learning for Time Constrained Sequential Detection, pp. 150–157 (June 2005)Google Scholar
  14. 14.
    Sznitman, R., Becker, C., Fleuret, F., Fua, P.: Fast Object Detection with Entropy-Driven Evaluation, pp. 3270–3277 (2013)Google Scholar
  15. 15.
    Fleuret, F., Geman, D.: Stationary Features and Cat Detection 9, 2549–2578 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Raphael Sznitman
    • 1
  • Carlos Becker
    • 1
  • Pascal Fua
    • 1
  1. 1.École Polytechnique Fédérale de LausanneSwitzerland

Personalised recommendations