Advertisement

Desired-View Controlled Positioning of Angiographic C-arms

  • Pascal Fallavollita
  • Alexander Winkler
  • Severine Habert
  • Patrick Wucherer
  • Philipp Stefan
  • Riad Mansour
  • Reza Ghotbi
  • Nassir Navab
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)

Abstract

We present the idea of a user interface concept, which resolves the challenges involved in the control of angiographic C-arms for their constant repositioning during interventions by either the surgeons or the surgical staff. Our aim is to shift the paradigm of interventional image acquisition workflow from the traditional control device interfaces to ‘desired-view’ control. This allows the physicians to only communicate the desired outcome of imaging, based on simulated X-rays from pre-operative CT or CTA data, while the system takes care of computing the positioning of the imaging device relative to the patient’s anatomy through inverse kinematics and CT to patient registration. Together with our clinical partners, we evaluate the new technique using 5 patient CTA and their corresponding intraoperative X-ray angiography datasets.

Keywords

C-arm fluoroscopy angiography user interface patient positioning desired-view control inverse kinematics 

References

  1. 1.
    Matthews, F., et al.: Navigating the fluoroscope’s c-arm back into position: an accurate and practicable solution to cut radiation and optimize intraoperative workflow. Journal of Orthopaedic Trauma 21, 687–692 (2007)CrossRefGoogle Scholar
  2. 2.
    Navab, N., Wiesner, S., Benhimane, S., Euler, E., Heining, S.M.: Visual servoing for intraoperative positioning and repositioning of mobile C-arms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 551–560. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Matthäus, L., Binder, N., Bodensteiner, C., Schweikard, A.: Closed-form inverse kinematic solution for fluoroscopic C-arms. Advanced Robotics 21(8), 869–886 (2007)CrossRefGoogle Scholar
  4. 4.
    Dressel, P., Wang, L., Kutter, O., Traub, J., Heining, S., Navab, N.: Intraoperative positioning of mobile C-arms using artificial fluoroscopy. In: SPIE Medical Imaging, p. 762506 (2010)Google Scholar
  5. 5.
    Schaller, C., Rohkohl, C., Penne, J., Stürmer, M., Hornegger, J.: Inverse C-arm positioning for interventional procedures using real-time body part detection. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 549–556. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Markelj, P., Tomaževič, D., Likar, B., Pernuš, F.: A review of 3D/2D registration methods for image-guided interventions. Medical Image Analysis 16(3), 642–661 (2012)CrossRefGoogle Scholar
  7. 7.
    Fallavollita, P., et al.: Technical Note: Unsupervised C-arm pose tracking with radiographic fiducial. Medical Physics 38(4), 2241–2245 (2011)CrossRefGoogle Scholar
  8. 8.
    Fallavollita, P., Burdette, C., Song, D.Y., Abolmaesumi, P., Fichtinger, G.: C-arm tracking by intensity-based registration of a fiducial in prostate brachytherapy. In: Navab, N., Jannin, P. (eds.) IPCAI 2010. LNCS, vol. 6135, pp. 45–55. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Graetzel, C., Fong, T., Grange, S., Baur, C.: A non-contact mouse for surgeon-computer interaction. Technology and Health Care 12(3), 245–257 (2004)Google Scholar
  10. 10.
    Wachs, J., Stern, H., Edan, Y., Gillam, M., Feied, C., Smith, M., Handler, J.: A real-time hand gesture interface for medical visualization applications. In: Applications of Soft Computing. AISC, vol. 36, pp. 153–162. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Stern, H.I., Wachs, J.P., Edan, Y.: Optimal consensus intuitive hand gesture vocabulary design. In: IEEE Semantic Computing, pp. 96–103 (2008)Google Scholar
  12. 12.
    McLaughlin, K.: Microsoft Partners See Kinect Going Beyond Games (June 17, 2010), ChannelWeb http://www.crn.com/software/225700575
  13. 13.
    Johnson, R., O’Hara, K., Sellen, A., Cousins, C., Criminisi, A.: Exploring the potential for touchless interaction in image-guided interventional radiology. In: SIGCHI Conference on Human Factors in Computing Systems, pp. 3323–3332 (2011)Google Scholar
  14. 14.
    Frenzel, T.: Patient setup using a 3D laser surface scanning system. In: World Congress on Medical Physics and Biomedical Engineering, pp. 217–220 (2009)Google Scholar
  15. 15.
    Gierga, D.P., et al.: Comparison of target registration errors for multiple image-guided techniques in accelerated partial breast irradiation. International Journal of Radiation Oncology Biology Physics 70(4), 1239–1246 (2008)CrossRefGoogle Scholar
  16. 16.
    Wang, L., Fallavollita, P., Zou, R., Chen, X., Weidert, S., Navab, N.: Closed-form inverse kinematics for interventional C-arm X-ray imaging with six degrees of freedom: modeling and application. IEEE Trans. Med. Imaging 31(5), 1086–1099 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pascal Fallavollita
    • 1
  • Alexander Winkler
    • 1
  • Severine Habert
    • 1
  • Patrick Wucherer
    • 1
  • Philipp Stefan
    • 1
  • Riad Mansour
    • 3
  • Reza Ghotbi
    • 3
  • Nassir Navab
    • 1
    • 2
  1. 1.Computer Aided Medical ProceduresTechnische Universität MünchenGermany
  2. 2.Computer Aided Medical ProceduresJohns Hopkins UniversityUSA
  3. 3.Klinikum München PasingGermany

Personalised recommendations