3D+time Left Ventricular Strain by Unwrapping Harmonic Phase with Graph Cuts

  • Ming Li
  • Himanshu Gupta
  • Steven G. Lloyd
  • Louis J. Dell’Italia
  • Thomas S. DenneyJr.
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)


In previous work, a three-dimensional left ventricular strain throughout the cardiac cycle was reconstructed using a prolate spheroidal B-spline (PSB) method with displacement measurements obtained from unwrapped tagged MRI (tMRI) harmonic phase images. Manually placed branch cuts were required for each harmonic phase image to resolve phase inconsistencies and to guide the phase unwrapping (mSUP), which is both labor intensive and time consuming and therefore not proper for clinic application. In this paper, we present an automated graph cuts based phase unwrapping method for myocardium displacement measurement (caSUP) which can be used to compute 3D+time cardiac strain. A set of 8 human studies were used to optimize parameters of the energy function and another set of 32 human studies were used to validate the proposed method by comparing resulted strains with those from mSUP and a feature-based (FB) method using the same PSB strain reconstruction. The automated caSUP strains were close to the manual strains and only required 6 minutes after myocardium segmentation versus ~2 hours for the manual method.


Mitral Regurgitation Unwrap Phase Integer Optimization Binary Optimization Harmonic Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Denney, T.S., McVeigh, E.R.: Model-free reconstruction of three-dimensional myocardial strain from planar tagged MR images. J. Magn. Reson. Imaging 7(5), 799–810 (1997)CrossRefGoogle Scholar
  2. 2.
    Guttman, M.A., Prince, J.L., McVeigh, E.R.: Tag and contour detection in tagged MR images of the left ventricle. IEEE Transactions on Medical Imaging 13(1), 74–88 (1994)CrossRefGoogle Scholar
  3. 3.
    Qian, Z., Montillo, A., Metaxas, D.N., Axel, L.: Segmenting cardiac MRI tagging lines using Gabor filter banks. In: Proceedings of the 25th Annual International Conference of the IEEE ngineering in Medicine and Biology Society, vol. 1, pp. 630–633. IEEE (2003)Google Scholar
  4. 4.
    Chandrashekara, R., Mohiaddin, R.H., Rueckert, D.: Analysis of 3-D myocardial motion in tagged MR images using nonrigid image registration. IEEE Transactions on Medical Imaging 23(10), 1245–1250 (2004)CrossRefGoogle Scholar
  5. 5.
    Ledesma-Carbayo, M.J., Derbyshire, J.A., Sampath, S., Santos, A., Desco, M., McVeigh, E.R.: Unsupervised estimation of myocardial displacement from tagged MR sequences using nonrigid registration. Magn. Reson. Med. 59(1), 181–189 (2008)CrossRefGoogle Scholar
  6. 6.
    Osman, N.F., McVeigh, E.R., Prince, J.L.: Imaging heart motion using harmonic phase MRI. IEEE Transactions on Medical Imaging 19(3), 186–202 (2000)CrossRefGoogle Scholar
  7. 7.
    Osman, N.F., Kerwin, W.S., McVeigh, E.R., Prince, J.L.: Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn. Reson. Med. 42(6), 1048–1060 (1999)CrossRefGoogle Scholar
  8. 8.
    Venkatesh, B.A., Gupta, H., Lloyd, S.G., Dell’Italia, L., Denney, T.S.: 3D left ventricular strain from unwrapped harmonic phase measurements. J. Magn. Reson. Imaging 31(4), 854–862 (2010)CrossRefGoogle Scholar
  9. 9.
    Li, J., Denney, T.S.: Left ventricular motion reconstruction with a prolate spheroidal B-spline model. Phys. Med. Biol. 51(3), 517–537 (2006)CrossRefGoogle Scholar
  10. 10.
    Ying, L., Liang, Z.P., Munson, D.C., Koetter, R., Frey, B.J.: Unwrapping of MR phase images using a Markov random field model. IEEE Transactions on Medical Imaging 25(1), 128–136 (2006)CrossRefGoogle Scholar
  11. 11.
    Bioucas-Dias, J.M., Valadao, G.: Phase unwrapping via graph cuts. IEEE Transactions on Image Processing 16(3), 698–709 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lempitsky, V., Rother, C., Roth, S., Blake, A.: Fusion moves for markov random field optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(8), 1392–1405 (2010)CrossRefGoogle Scholar
  13. 13.
    Kolmogorov, V.: Primal-dual algorithm for convex Markov random fields. Microsoft Research MSR-TR-2005-117 (2005)Google Scholar
  14. 14.
    Feng, W., Nagaraj, H., Gupta, H., Lloyd, S.G., Aban, I., Perry, G., Calhoun, D., Dell’Italia, L., Denney, T.S.: A Dual Propagation Contours Technique for Semi-Automated Assessment of Systolic and Diastolic Cardiac Function by CMR. J. Cardiovasc. Magn. Reson. 11(30) (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ming Li
    • 1
  • Himanshu Gupta
    • 2
  • Steven G. Lloyd
    • 2
  • Louis J. Dell’Italia
    • 2
  • Thomas S. DenneyJr.
    • 1
  1. 1.Auburn University MRI Research CenterAuburnUSA
  2. 2.Division of Cardiovascular DiseaseUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations