Structured Dictionaries for Ischemia Estimation in Cardiac BOLD MRI at Rest

  • Cristian Rusu
  • Sotirios A. Tsaftaris
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)


Cardiac Phase-resolved Blood-Oxygen-Level-Dependent (CP–BOLD) MRI examines changes in myocardial oxygenation in response to ischemia without contrast and stress agents. Since signal intensity changes are subtle, quantitative approaches are necessary to examine variations in myocardial BOLD signals and identify ischemic myocardial territories. Here, using data from animal studies, we extract myocardial time series (BOLD signal as a function of cardiac phase) and explore such variations using a structured dictionary-learning framework, considering shift-invariant learning and spatial priors. We use it: to learn a model of baseline (absence of disease) myocardial time series; and in datasets where disease is assumed, to obtain a spatial map of ischemia presence, identifying myocardial time series from ischemic territories in an unsupervised fashion, by exploiting structural properties, or the lack thereof, in the data. By providing new visualization and quantification approaches, we hope to accelerate the clinical translation of cardiac BOLD MRI for noninvasive ischemia assessment.


Bold Signal Dictionary Learning Matching Pursuit Cardiac Phase Sparsity Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Zhou, X., Tsaftaris, S.A., Liu, Y., Tang, R., Klein, R., Zuehlsdorff, S., Li, D., Dharmakumar, R.: Artifact-reduced two-dimensional cine steady state free precession for myocardial blood-oxygen-level-dependent imaging. JMRI 31(4), 863–871 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Tsaftaris, S.A., Zhou, X., Tang, R., Li, D., Dharmakumar, R.: Detecting myocardial ischemia at rest with Cardiac Phase-resolved Blood Oxygen Level-Dependent Cardiovascular Magnetic Resonance. Circ. Cardiovasc. Imaging 6(2), 311–319 (2013)CrossRefGoogle Scholar
  3. 3.
    U. S. Food and Drug Administration: FDA warns of rare but serious risk of heart attack and death with cardiac nuclear stress test drugs Lexiscan (regadenoson) and Adenoscan (adenosine) (2013)Google Scholar
  4. 4.
    Ootaki, Y., Ootaki, C., Kamohara, K., Akiyama, M., Zahr, F., Kopcak Jr., M.W., Dessoffy, R., Fukamachi, K.: Phasic coronary blood flow patterns in dogs vs. pigs: an acute ischemic heart study. Med. Sci. Monit. 14(10), 193–197 (2008)Google Scholar
  5. 5.
    Rusu, C., Dumitrescu, B., Tsaftaris, S.A.: Explicit shift-invariant dictionary learning. IEEE Sig. Proc. Let. 21(1), 6–9 (2014)CrossRefGoogle Scholar
  6. 6.
    Aharon, M., Elad, M., Bruckstein, A.: K–SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE TSP 54(11), 4311–4322 (2006)Google Scholar
  7. 7.
    Tsaftaris, S.A., Andermatt, V., Schlegel, A., Katsaggelos, A.K., Li, D., Dharmakumar, R.: A dynamic programming solution to tracking and elastically matching left ventricular walls in cardiac cine MRI. In: ICIP, pp. 2980–2983 (2008)Google Scholar
  8. 8.
    Pati, Y., Rezaiifar, R., Krishnaprasad, P.: Orthogonal matching pursuit: recursive function approximation with application to wavelet decomposition. In: Asilomar Conf. on Signals, Systems and Comput., vol. 1, pp. 40–44 (1993)Google Scholar
  9. 9.
    Tropp, J.A., Gilbert, A.C., Strauss, M.J.: Simultaneous sparse approximation via greedy pursuit. In: Proc. ICASSP, pp. 721–724 (2005)Google Scholar
  10. 10.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. Series B 58(1), 267–288 (1996)MathSciNetGoogle Scholar
  11. 11.
    Adler, A., Elad, M., Hel-Or, Y., Rivlin, E.: Sparse coding with anomaly detection. In: Proc. IEEE MLSP (2013)Google Scholar
  12. 12.
    Jiang, Z., Lin, Z., Davis, L.S.: Label consistent K-SVD: Learning a discriminative dictionary for recognition. IEEE PAMI 35(11), 2651–2664 (2013)CrossRefGoogle Scholar
  13. 13.
    Feng, C., Li, C., Zhao, D., Davatzikos, C., Litt, H.: Segmentation of the left ventricle using distance regularized two-layer level set approach. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 477–484. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Bai, W., Shi, W., O’Regan, D.P., Tong, T., Wang, H., Jamil-Copley, S., Peters, N.S., Rueckert, D.: A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: Application to cardiac MR images. IEEE Trans. Med. Imaging 32(7), 1302–1315 (2013)CrossRefGoogle Scholar
  15. 15.
    Sundar, H., Litt, H., Shen, D.: Estimating myocardial motion by 4d image warping. Pattern Recogn. 42(11), 2514–2526 (2009)CrossRefGoogle Scholar
  16. 16.
    Ou, Y., Ye, D.H., Pohl, K.M., Davatzikos, C.: Validation of DRAMMS among 12 popular methods in cross-subject cardiac MRI registration. In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds.) WBIR 2012. LNCS, vol. 7359, pp. 209–219. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Cristian Rusu
    • 1
  • Sotirios A. Tsaftaris
    • 1
  1. 1.IMT Institute for Advanced Studies LuccaItaly

Personalised recommendations