Advertisement

Patient-Specific Simulation of Implant Placement and Function for Cochlear Implantation Surgery Planning

  • Mario Ceresa
  • Nerea Mangado Lopez
  • Hector Dejea Velardo
  • Noemi Carranza Herrezuelo
  • Pavel Mistrik
  • Hans Martin Kjer
  • Sergio Vera
  • Rasmus R. Paulsen
  • Miguel Angel González Ballester
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)

Abstract

We present a framework for patient specific electrical stimulation of the cochlea, that allows to perform in-silico analysis of implant placement and function before surgery. A Statistical Shape Model (SSM) is created from high-resolution human μCT data to capture important anatomical details. A Finite Element Model (FEM) is built and adapted to the patient using the results of the SSM. Electrical simulations based on Maxwell’s equations for the electromagnetic field are performed on this personalized model. The model includes implanted electrodes and nerve fibers. We present the results for the bipolar stimulation protocol and predict the voltage spread and the locations of nerve excitation.

References

  1. 1.
    World Health Organization: Deafness and hearing impairment (2012)Google Scholar
  2. 2.
    World Health Organization: The global burden of disease: 2004 update (2008)Google Scholar
  3. 3.
    Edom, E., Obrist, D., Kleiser, L.: Simulation of fluid flow and basilar-membrane motion in a two-dimensional box model of the cochlea. In: AIP Conference Proceedings, vol. 1403, p. 608 (2011)Google Scholar
  4. 4.
    Nogueira, W.: Finite element study on chochlear implant electrical activity. In: ICBT Proceeding (2013)Google Scholar
  5. 5.
    Nogueira, W., Penninger, R., Buchner, A.: A model of the electrically stimulated cochlea. In: DAGA Proceeding (2014)Google Scholar
  6. 6.
    Malherbe, T.K., Hanekom, T., Hanekom, J.J.: Can subject-specific single-fibre electrically evoked auditory brainstem response data be predicted from a model? Medical Engineering & Physics 35(7), 926–936 (2013)CrossRefGoogle Scholar
  7. 7.
    Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G.: User-guided 3d active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)CrossRefGoogle Scholar
  8. 8.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. In: ACM Siggraph Computer Graphics, vol. 21, pp. 163–169 (1987)Google Scholar
  9. 9.
    Paulsen, R.R., Baerentzen, J.A., Larsen, R.: Markov random field surface reconstruction. IEEE Transactions on Visualization and Computer Graphics 16(4), 636–646 (2010)CrossRefGoogle Scholar
  10. 10.
    Kjer, H., Vera, S., Perez, F., Gonzalez-Ballester, M., Paulsen, R.: Shape modeling of the inner ear from micro-ct data. In: Proceedings of Shape Symposium on Statistical Shape Models and Applications (2014)Google Scholar
  11. 11.
    Kjer, H.M., Ceresa, M., Carranza, N., Vera, S., Gonzalez-Ballester, M.A., Paulsen, R.R.: Cochlear finite element modelling, mesh quality under ssm-driven deformations. In: MeshMED Workshop - Medical Image Computing and Computer-Assisted Intervention, MICCAI 2013, pp. 70–78. Springer, Heidelberg (2013)Google Scholar
  12. 12.
    Ruokolainen, J., Lyly, M.: ELMER, a computational tool for PDEs–Application to vibroacoustics. CSC News 12(4), 30–32 (2000)zbMATHGoogle Scholar
  13. 13.
    Råback, P., Malinen, M., Ruokolainen, J., Pursula, A., Zwinger, T.: Elmer models manual. CSC–IT Center for Science, Helsinki, Finland (2013)Google Scholar
  14. 14.
    Frijns, J.H.M., De Snoo, S., Schoonhoven, R.: Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea. Hearing Research 87(1), 170–186 (1995)CrossRefGoogle Scholar
  15. 15.
    Oliphant, T.E.: Python for scientific computing. Computing in Science & Engineering 9(3), 10–20 (2007)CrossRefGoogle Scholar
  16. 16.
    Vanpoucke, F.J., Boermans, P., Frijns, J.H.: Assessing the placement of a cochlear electrode array by multidimensional scaling. IEEE Transactions on Biomedical Engineering 59(2), 307–310 (2012)CrossRefGoogle Scholar
  17. 17.
    Gani, M., Valentini, G., Sigrist, A., Kós, M.I., Boëx, C.: Implications of deep electrode insertion on cochlear implant fitting. Journal of the Association for Research in Otolaryngology 8(1), 69–83 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mario Ceresa
    • 1
  • Nerea Mangado Lopez
    • 1
  • Hector Dejea Velardo
    • 1
  • Noemi Carranza Herrezuelo
    • 3
  • Pavel Mistrik
    • 4
  • Hans Martin Kjer
    • 5
  • Sergio Vera
    • 6
  • Rasmus R. Paulsen
    • 5
  • Miguel Angel González Ballester
    • 1
    • 2
  1. 1.Simbiosys groupUniversitat Pompeu FabraBarcelonaSpain
  2. 2.ICREABarcelonaSpain
  3. 3.Multicellular system biology groupCentre for Genomic RegulationBarcelonaSpain
  4. 4.Med-ELInnsbruckAustria
  5. 5.Denmark Technical UniversityCopenhagenDenmark
  6. 6.Alma IT SystemsBarcelonaSpain

Personalised recommendations