Advertisement

Rapid D-Affine Biventricular Cardiac Function with Polar Prediction

  • Kathleen Gilbert
  • Brett R. Cowan
  • Avan Suinesiaputra
  • Christopher Occleshaw
  • Alistair A. Young
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)

Abstract

Although many solutions have been proposed for left ventricular functional analysis of the heart, right and left (bi-) ventricular function has been problematic due to the complex geometry and large motions. Biventricular function is particularly important in congenital heart disease, the most common type of birth defects. We describe a rapid interactive analysis tool for biventricular function which incorporates 1) a 3D+ time finite element model of biventricular geometry, 2) a fast prediction step which estimates an initial geometry in a polar coordinate system, and 3) a Cartesian update which penalizes deviations from affine transformations (D-Affine) from a prior. Solution times were very rapid, enabling interaction in real time using guide point modeling. The method was applied to 13 patients with congenital heart disease and compared with the clinical gold standard of manual tracing. Results between the methods showed good correlation (R2 > 0.9) and good precision (volume<17ml; mass<11g) for both chambers.

Keywords

Cardiac MRI Image analysis Congenital Heart Disease 

References

  1. 1.
    Bistoquet, A., et al.: Myocardial deformation recovery from cine mri using a nearly incompressible biventricular model. Medical Image Analysis 12(1), 69–85 (2008)CrossRefGoogle Scholar
  2. 2.
    Chen, Y., et al.: Object modelling by registration of multiple range images. Image and Vision Computing 10(3), 145–155 (1992)CrossRefGoogle Scholar
  3. 3.
    Commowick, O., et al.: An efficient locally affine framework for the smooth registration of anatomical structures. Medical Image Analysis 12(4), 427–441 (2008)CrossRefGoogle Scholar
  4. 4.
    Grothues, F., et al.: Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. American Heart Journal 147(2), 218–223 (2004)CrossRefGoogle Scholar
  5. 5.
    Haddad, F., et al.: Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 117(13), 1717–1731 (2008)CrossRefGoogle Scholar
  6. 6.
    Hoffman, J.I., et al.: The incidence of congenital heart disease. Journal of the American College of Cardiology 39(12), 1890–1900 (2002)CrossRefGoogle Scholar
  7. 7.
    Hubka, M., et al.: Three-dimensional echocardiographic measurement of left and right ventricular mass and volume: in vitro validation. The International Journal of Cardiovascular Imaging 18(2), 111–118 (2002)CrossRefGoogle Scholar
  8. 8.
    Hudsmith, L., et al.: Normal Human Left and Right Ventricular and Left Atrial Dimensions Using Steady State Free Precession Magnetic Resonance Imaging. Journal of Cardiovascular Magnetic Resonance 7(5), 775–782 (2005)CrossRefGoogle Scholar
  9. 9.
    Li, B., et al.: In-line automated tracking for ventricular function with magnetic resonance imaging. JACC. Cardiovascular Imaging 3(8), 860–866 (2010)CrossRefGoogle Scholar
  10. 10.
    McLeod, K., Seiler, C., Toussaint, N., Sermesant, M., Pennec, X.: Regional analysis of left ventricle function using a cardiac-specific polyaffine motion model. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 483–490. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Perperidis, D., Mohiaddin, R.H., Rueckert, D.: Spatio-Temporal Free-Form Registration of Cardiac MR Image Sequences. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 911–919. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Petitjean, C.: RV Segmentation Challenge in Cardiac MRI, http://www.litislab.eu/rvsc/workshop/rv-segmentation-challenge-in-cardiac-mri
  13. 13.
    Tustison, N.J., et al.: Biventricular myocardial strains via nonrigid registration of anfigatomical nurbs models. IEEE Transactions on Medical Imaging 25(1), 94–112 (2006)CrossRefGoogle Scholar
  14. 14.
    Young, A., et al.: Non-Rigid Heart Wall Motion using MR Tagging. In: Proceedings of the 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1992, pp. 399–404 (1992)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Kathleen Gilbert
    • 1
  • Brett R. Cowan
    • 1
  • Avan Suinesiaputra
    • 1
  • Christopher Occleshaw
    • 1
  • Alistair A. Young
    • 1
  1. 1.Department of Anatomy with RadiologyUniversity of AucklandNew Zealand

Personalised recommendations