Variational Bayesian Electrophysiological Imaging of Myocardial Infarction

  • Jingjia Xu
  • John L. Sapp
  • Azar Rahimi Dehaghani
  • Fei Gao
  • Linwei Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)


The presence, size, and distribution of ischemic tissue bear significant prognostic and therapeutic implication for ventricular arrhythmias. While many approaches to 3D infarct detection have been developed via electrophysiological (EP) imaging from noninvasive electrocardiographic data, this ill-posed inverse problem remains challenging especially for septal infarcts that are hidden from body-surface data. We propose a variational Bayesian framework for EP imaging of 3D infarct using a total-variation prior. The posterior distribution of intramural action potential and all regularization parameters are estimated from body-surface data by minimizing the Kullback-Leibler divergence. Because of the uncertainty introduced in prior models, we hypothesize that the solution uncertainty plays as important a role as the point estimate in interpreting the reconstruction. This is verified in a set of phantom and real-data experiments, where regions of low confidence help to eliminate false-positives and to accurately identify infarcts of various locations (including septum) and distributions. Owing to the ability of total-variation prior in extracting the boundary between smooth regions, the presented method also has the potential to outline infarct border that is the most critical region responsible for ventricular arrhythmias.


Electrophysiological imaging myocardial infarction variational Bayesian methods total variation 


  1. 1.
    Stevenson, W.: Ventricular scars and ventricular tachycardia. Transactions of the American Clinical and Climatological Association 120, 403–412 (2008)Google Scholar
  2. 2.
    Ghosh, S., Rudy, Y.: Application of l1-norm regularization to epicardial potential solutions of the inverse electrocardiography problem. Ann. Biomed. Eng. 37(5), 902–912 (2009)CrossRefGoogle Scholar
  3. 3.
    Wang, L., Dawoud, F., Yeung, S.K., Shi, P., Wong, K., Lardo, A.: Transmural imaging of ventricular action potentials and post-infarction scars in swine hearts. IEEE Trans. Med. Imag. 32(4), 731–747 (2013)CrossRefGoogle Scholar
  4. 4.
    Plonsey, R.: Bioelectric phenomena. Wiley Online Library (1999)Google Scholar
  5. 5.
    Nielsen, B., Lysaker, M., Grøttum, P.: Computing ischemic regions in the heart with the bidomain model: first steps towards validation. IEEE Trans. Med. Imag. 32(6), 1085–1096 (2013)CrossRefGoogle Scholar
  6. 6.
    Xu, J., Dehaghani, A.R., Gao, F., Wang, L.: A novel total variation based noninvasive transmural electrophysiological imaging. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 501–508. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Wang, D., Kirby, R.M., Macleod, R.S., Johnson, C.R.: Inverse electrocardiographic source localization of ischemia: An optimization framework and finite element solution. Journal of Computational Physics 250, 403–424 (2013)CrossRefzbMATHGoogle Scholar
  8. 8.
    Šmídl, V., Quinn, A.: The variational Bayes method in signal processing. Springer (2006)Google Scholar
  9. 9.
    Babacan, S.D., Molina, R., Katsaggelos, A.K.: Parameter estimation in TV image restoration using variational distribution approximation. IEEE Trans. Image Process. 17(3), 326–339 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Sapp, J.L., Dawoud, F., Clements, J.C., Horáček, B.M.: Inverse solution mapping of epicardial potentials quantitative comparison with epicardial contact mapping. Circulation: Arrhythmia and Electrophysiology 5(5), 1001–1009 (2012)Google Scholar
  11. 11.
    Wang, L., Wong, K.C., Zhang, H., Liu, H., Shi, P.: Noninvasive computational imaging of cardiac electrophysiology for 3-D infarct. IEEE Trans. Biomed. Eng. 58(4), 1033–1043 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jingjia Xu
    • 1
  • John L. Sapp
    • 2
  • Azar Rahimi Dehaghani
    • 1
  • Fei Gao
    • 3
  • Linwei Wang
    • 1
  1. 1.Rochester Institute of TechnologyRochesterUSA
  2. 2.Queen Elizabeth II Health Sciences CentreHalifaxCanada
  3. 3.Molecular Imaging DivisionSiemens Medical SolutionsKnoxvilleUSA

Personalised recommendations