Spatially Varying Registration Using Gaussian Processes

  • Thomas Gerig
  • Kamal Shahim
  • Mauricio Reyes
  • Thomas Vetter
  • Marcel Lüthi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)


In this paper we propose a new approach for spatially-varying registration using Gaussian process priors. The method is based on the idea of spectral tempering, i.e. the spectrum of the Gaussian process is modified depending on a user defined tempering function. The result is a non-stationary Gaussian process, which induces different amount of smoothness in different areas. In contrast to most other schemes for spatially-varying registration, our approach does not require any change in the registration algorithm itself, but only affects the prior model. Thus we can obtain spatially-varying versions of any registration method whose deformation prior can be formulated in terms of a Gaussian process. This includes for example most spline-based models, but also statistical shape or deformation models. We present results for the problem of atlas based skull-registration of cone beam CT images. These datasets are difficult to register as they contain a large amount of noise around the teeth. We show that with our method we can become robust against noise, but still obtain accurate correspondence where the data is clean.


Gaussian Process Registration Method Deformation Model Reproduce Kernel Hilbert Space Statistical Shape Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cahill, N.D., Noble, J.A., Hawkes, D.J.: A demons algorithm for image registration with locally adaptive regularization. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 574–581. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Christensen, G.E., Miller, M.I., Vannier, M.W., Grenander, U.: Individualizing neuro-anatomical atlases using a massively parallel computer. Computer 29(1), 32–38 (1996)CrossRefGoogle Scholar
  3. 3.
    Davatzikos, C.: Spatial transformation and registration of brain images using elastically deformable models. Computer Vision and Image Understanding 66(2), 207–222 (1997)CrossRefGoogle Scholar
  4. 4.
    Freiman, M., Voss, S.D., Warfield, S.K.: Demons registration with local affine adaptive regularization: application to registration of abdominal structures. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1219–1222. IEEE (2011)Google Scholar
  5. 5.
    Gee, A.H., Treece, G.M.: Systematic misregistration and the statistical analysis of surface data. Medical Image Analysis 18, 385–393 (2014)CrossRefGoogle Scholar
  6. 6.
    Lüthi, M., Blanc, R., Albrecht, T., Gass, T., Goksel, O., Büchler, P., Kistler, M., Bousleiman, H., Reyes, M., Cattin, P.C., et al.: Statismo-a framework for pca based statistical models. Insight Journal (2012)Google Scholar
  7. 7.
    Lüthi, M., Jud, C., Vetter, T.: A unified approach to shape model fitting and non-rigid registration. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds.) MLMI 2013. LNCS, vol. 8184, pp. 66–73. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Pintore, A., Holmes, C.: Spatially adaptive non-stationary covariance functions via spatially adaptive spectra (2004),
  9. 9.
    Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. MIT Press (2006)Google Scholar
  10. 10.
    Ruan, D., Fessler, J.A., Roberson, M., Balter, J., Kessler, M.: Nonrigid Registration Using Regularization that Accomodates Local Tissue Rigidity. In: Proc. of SPIE. Medical Imaging: Image Processing, vol. 6144 (2006)Google Scholar
  11. 11.
    Schmah, T., Risser, L., Vialard, F.-X.: Left-invariant metrics for diffeomorphic image registration with spatially-varying regularisation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 203–210. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Simpson, I.J.A., Woolrich, M.W., Cardoso, M.J., Cash, D.M., Modat, M., Schnabel, J.A., Ourselin, S.: A Bayesian Approach for Spatially Adaptive Regularisation in Non-rigid Registration. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 10–18. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Wahba, G.: Spline models for observational data. Society for Industrial Mathematics (1990)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thomas Gerig
    • 1
  • Kamal Shahim
    • 2
  • Mauricio Reyes
    • 2
  • Thomas Vetter
    • 1
  • Marcel Lüthi
    • 1
  1. 1.University of BaselBaselSwitzerland
  2. 2.University of BernBernSwitzerland

Personalised recommendations