Real-Time 3D Curved Needle Segmentation Using Combined B-Mode and Power Doppler Ultrasound

  • Joseph D. Greer
  • Troy K. Adebar
  • Gloria L. Hwang
  • Allison M. Okamura
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)


This paper presents a real-time segmentation method for curved needles in biological tissue based on analysis of B-mode and power Doppler images from a tracked 2D ultrasound transducer. Mechanical vibration induced by an external voice coil results in a Doppler response along the needle shaft, which is centered around the needle section in the ultrasound image. First, B-mode image analysis is performed within regions of interest indicated by the Doppler response to create a segmentation of the needle section in the ultrasound image. Next, each needle section is decomposed into a sequence of points and transformed into a global coordinate system using the tracked transducer pose. Finally, the 3D shape is reconstructed from these points. The results of this method differ from manual segmentation by 0.71±0.55 mm in needle tip location and 0.38±0.27 mm along the needle shaft. This method is also fast, taking 5-10 ms to run on a standard PC, and is particularly advantageous in robotic needle steering, which involves thin, curved needles with poor echogenicity.


Ultrasound Image Manual Segmentation Power Doppler Ultrasound Needle Shape Power Doppler Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aboofazeli, M., Abolmaesumi, P., Mousavi, P., Fichtinger, G.: A new scheme for curved needle segmentation in three-dimensional ultrasound images. In: IEEE Int. Symp. Biomedical Imaging: Nano to Macro, pp. 1067–1070 (2009)Google Scholar
  2. 2.
    Adebar, T.K., Okamura, A.M.: 3D segmentation of curved needles using doppler ultrasound and vibration. In: Barratt, D., Cotin, S., Fichtinger, G., Jannin, P., Navab, N. (eds.) IPCAI 2013. LNCS, vol. 7915, pp. 61–70. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Cheung, S., Rohling, R.: Enhancement of needle visibility in ultrasound-guided percutaneous procedures. Ultrasound Med. Biol. 30(5), 617–624 (2004)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ding, M., Cardinal, H.N., Fenster, A.: Automatic needle segmentation in 3D ultrasound images using two orthogonal 2D image projections. Med. Phys. 30(2), 222–234 (2003)CrossRefGoogle Scholar
  5. 5.
    Ding, M., Fenster, A.: A real-time biopsy needle segmentation technique using hough transform. Med. Phys. 30(8), 2222–2233 (2003)CrossRefGoogle Scholar
  6. 6.
    Fronheiser, M.P., Idriss, S.F., Wolf, P.D., Smith, S.W.: Vibrating interventional device detection using real-time 3-D color doppler. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(6), 1355–1362 (2008)CrossRefGoogle Scholar
  7. 7.
    Harmat, A., Rohling, R.N., Salcudean, S.E.: Needle tip localization using stylet vibration. Ultrasound Med. Biol. 32(9), 1339–1348 (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    Holen, J., Waag, R.C., Gramiak, R.: Improved needle-tip visualization by color Doppler sonography. Am. J. Roentgenol. 156, 401–402 (1985)Google Scholar
  9. 9.
    Klein, S.M., Fronheiser, M.P., Reach, J., Nielsen, K.C., Smith, S.W.: Piezoelectric vibrating needle and catheter for enhancing ultrasound-guided peripheral nerve blocks. Anesth. Analg. 105(6), 1858–1860 (2007)CrossRefGoogle Scholar
  10. 10.
    Mung, J., Vignon, F., Jain, A.: A non-disruptive technology for robust 3D tool tracking for ultrasound-guided interventions. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 153–160. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Neshat, H.R.S., Patel, R.V.: Real-time parametric curved needle segmentation in 3D ultrasound images. In: IEEE RAS EMBS Int. Conf. Biomedical Robotics Biomechatronics, pp. 670–675 (2008)Google Scholar
  12. 12.
    Okazawa, S.H., Ebrahimi, R., Chuang, J., Rohling, R.N., Salcudean, S.E.: Methods for segmenting curved needles in ultrasound images. Med. Im. Anal. 10(3), 330–342 (2006)CrossRefGoogle Scholar
  13. 13.
    Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11, 23–27 (1975)Google Scholar
  14. 14.
    Uhercík, M., Kybic, J., Liebgott, H., Cachard, C.: Model fitting using RANSAC for surgical tool localization in 3D ultrasound images. IEEE Trans. Biomed. Eng. 57(8), 1907–1916 (2010)CrossRefGoogle Scholar
  15. 15.
    Zhou, H., Qiu, W., Ding, M., Zhang, S.: Automatic needle segmentation in 3d ultrasound images using 3d improved hough transform. In: Miga, M., Cleary, K. (eds.) SPIE Proceedings 2008, vol. 6918, pp. 691821–691821-9 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Joseph D. Greer
    • 1
  • Troy K. Adebar
    • 1
  • Gloria L. Hwang
    • 1
  • Allison M. Okamura
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations