Advertisement

Augmented Reality Assisted Laparoscopic Partial Nephrectomy

  • Adrian Schneider
  • Simon Pezold
  • Andreas Sauer
  • Jan Ebbing
  • Stephen Wyler
  • Rachel Rosenthal
  • Philippe C. Cattin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)

Abstract

Computer assisted navigation is a widely adopted technique in neurosurgery and orthopedics. However, it is rarely used for surgeries on abdominal organs. In this paper, we propose a novel, non-invasive method based on electromagnetic tracking to determine the pose of the kidney. As a clinical use case, we show a complete surgical navigation system for augmented reality assisted laparoscopic partial nephrectomy. Experiments were performed ex vivo on pig kidneys and the evaluation showed an excellent augmented reality alignment error of 2.1 mm ± 1.2 mm.

Keywords

Augmented Reality Electromagnetic Tracking Navigation 

References

  1. 1.
    Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-d point sets. IEEE Trans. on Pattern Analysis and Machine Intelligence (5), 698–700 (1987)Google Scholar
  2. 2.
    Hollenbeck, B.K., Taub, D.A., Miller, D.C., et al.: National utilization trends of partial nephrectomy for renal cell carcinoma: a case of underutilization? Urology 254–259 (2006)Google Scholar
  3. 3.
    Hughes-Hallett, A., Mayer, E.K., Marcus, H.J., Cundy, T.P., Pratt, P.J., Darzi, A.W., Vale, J.A.: Augmented reality partial nephrectomy: Examining the current status and future perspectives. Urology (2013)Google Scholar
  4. 4.
    Huynh, D.Q.: Metrics for 3d rotations: Comparison and analysis. Journal of Mathematical Imaging and Vision 35(2), 155–164 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Nakamoto, M., Ukimura, O., Gill, I., Mahadevan, A., Miki, T., Hashizume, M., Sato, Y.: Realtime organ tracking for endoscopic augmented reality visualization using miniature wireless magnetic tracker. In: Dohi, T., Sakuma, I., Liao, H. (eds.) MIAR 2008. LNCS, vol. 5128, pp. 359–366. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Onprasert, O.,, S.: A novel method on tool tip calibration for biomedical application. In: The World Congress on Computer Science and Information Engineering, pp. 650–653 (2011)Google Scholar
  7. 7.
    Park, F.C., Martin, B.J.: Robot sensor calibration: solving ax= xb on the euclidean group. IEEE Trans. on Robotics and Automation 10(5), 717–721 (1994)CrossRefzbMATHGoogle Scholar
  8. 8.
    Weise, E.S., Winfield, H.N.: Laparoscopic partial nephrectomy. J. Endourol. 19, 634–642 (2005)CrossRefGoogle Scholar
  9. 9.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(11), 1330–1334 (2000)CrossRefGoogle Scholar
  10. 10.
    Zhou, J., Sebastian, E., Mangona, V., Yan, D.: Real-time catheter tracking for high-dose-rate prostate brachytherapy using an electromagnetic 3d-guidance device: A preliminary performance study. Medical Physics 40(2), 021716 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Adrian Schneider
    • 1
  • Simon Pezold
    • 1
  • Andreas Sauer
    • 1
  • Jan Ebbing
    • 1
  • Stephen Wyler
    • 1
  • Rachel Rosenthal
    • 1
  • Philippe C. Cattin
    • 1
  1. 1.Medical Image Analysis CenterUniversity of BaselSwitzerland

Personalised recommendations