Advertisement

Multi-view Stereo and Advanced Navigation for Transanal Endoscopic Microsurgery

  • Christos Bergeles
  • Philip Pratt
  • Robert Merrifield
  • Ara Darzi
  • Guang-Zhong Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)

Abstract

Transanal endoscopic microsurgery (TEM), i.e., the local excision of rectal carcinomas by way of a bimanual operating system with magnified binocular vision, is gaining acceptance in lieu of more radical total interventions. A major issue with this approach is the lack of information on submucosal anatomical structures. This paper presents an advanced navigation system, wherein the intraoperative 3D structure is stably estimated from multiple stereoscopic views. It is registered to a preoperatively acquired anatomical volume based on subject-specific priors. The endoscope motion is tracked based on the 3D scene and its field-of-view is visualised jointly with the preoperative information. Based on in vivo data, this paper demonstrates how the proposed navigation system provides intraoperative navigation for TEM.

Keywords

Minimally Invasive Surgery Transanal Endoscopic Microsurgery Endoscopic Image Endoscopic View Robotic Partial Nephrectomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cataldo, P., Buess, G.: Transanal endoscopic microsurery: principles and techniques. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Dey, D., Gobbi, D.G., Slomka, P.J., Surry, K.J.M., Peters, T.M.: Automatic fusion of freehand endoscopic brain images to three-dimensional surfaces: creating stereoscopic panoramas. IEEE Trans. Medical Imaging 21(1), 23–30 (2002)CrossRefGoogle Scholar
  3. 3.
    Pratt, P., Mayer, R., Vale, J., Cohen, D., Edwards, E., Darzi, A., Yang, G.Z.: An effective visualisation and registration system for image-guided robotic partial nephrectomy. J. Robotic Surgery 6(1), 23–31 (2012)CrossRefzbMATHGoogle Scholar
  4. 4.
    Vemuri, A.S., Wu, J.C.H., Liu, K.C., Wu, H.S.: Deformable three-dimensional model architecture for interactive augmented reality in minimally invasive surgery. Surgical Endoscopy 26(12), 3655–3662 (2012)CrossRefGoogle Scholar
  5. 5.
    Rohl, S., Bodenstedt, S., Suwelack, S., Kenngott, H., Muller-Stich, B.P., Dillmann, R., Speidel, S.: Dense GPU-enhanced surface reconstruction from stereo endoscopic images from intraoperative registration. Medical Physics 39(3), 1632–1645 (2012)CrossRefGoogle Scholar
  6. 6.
    Chang, P.L., Stoyanov, D., Davison, A.J., Edwards, P.E.: Real-time dense stereo reconstruction using convex optimisation with a cost-volume for image-guided robotic surgery. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 42–49. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Goesele, M., Brian, C., Seitz, S.M.: Multi-view stereo revisited. In: IEEE Int. Conf. Computer Vision and Pattern Recognition, pp. 2402–2409 (2006)Google Scholar
  8. 8.
    Merritt, S.A., Khare, R., Bascom, R., Higgins, W.E.: Interactive CT-video registration for the continuous guidance of bronchoscopy. IEEE Trans. Medical Imaging 32(8), 1376–1396 (2013)CrossRefGoogle Scholar
  9. 9.
    Mirota, D.J., Uneri, A., Schafer, S., Nithiananthan, S., Reh, D.D., Ishii, M., Gallia, G.L., Taylor, R.H., Hager, G.D., Siewerdsen, J.H.: Evaluation of a system for high-accuracy 3D image-based registration of endoscopic video to C-arm cone-beam CT for image-guided skull base surgery. IEEE Trans. Medical Imaging 32(7), 1215–1226 (2013)CrossRefGoogle Scholar
  10. 10.
    Samara, Y., Fiebich, M., Dachman, A.H., Doi, K., Hoffmann, K.R.: Automated centreline tracking of the human colon. In: Medical Imaging, pp. 740–746 (1998)Google Scholar
  11. 11.
    Totz, J., Mountney, P., Stoyanov, D., Yang, G.-Z.: Dense surface reconstruction for enhanced navigation in MIS. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 89–96. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Analysis and Machine Intelligence 22(11), 1330–1334 (2000)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christos Bergeles
    • 1
  • Philip Pratt
    • 1
  • Robert Merrifield
    • 1
  • Ara Darzi
    • 1
  • Guang-Zhong Yang
    • 1
  1. 1.The Hamlyn CentreImperial College LondonLondonUK

Personalised recommendations