Maximum-Margin Based Representation Learning from Multiple Atlases for Alzheimer’s Disease Classification

  • Rui Min
  • Jian Cheng
  • True Price
  • Guorong Wu
  • Dinggang Shen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)


In order to establish the correspondences between different brains for comparison, spatial normalization based morphometric measurements have been widely used in the analysis of Alzheimer’s disease (AD). In the literature, different subjects are often compared in one atlas space, which may be insufficient in revealing complex brain changes. In this paper, instead of deploying one atlas for feature extraction and classification, we propose a maximum-margin based representation learning (MMRL) method to learn the optimal representation from multiple atlases. Unlike traditional methods that perform the representation learning separately from the classification, we propose to learn the new representation jointly with the classification model, which is more powerful in discriminating AD patients from normal controls (NC). We evaluated the proposed method on the ADNI database, and achieved 90.69% for AD/NC classification and 73.69% for p-MCI/s-MCI classification.


Support Vector Machine Feature Selection Optimal Representation Registration Error Multiple Kernel Learning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ashburner, J., Friston, K.J.: Voxel-based morphometry – the methods. NeuroImage 11(6), 805–821 (2000)CrossRefGoogle Scholar
  2. 2.
    Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.O., Chupin, M., Benali, H., Colliot, O.: Automatic classification of patients with alzheimer’s disease from structural mri: A comparison of ten methods using the adni database. NeuroImage 56(2), 766–781 (2011)CrossRefGoogle Scholar
  3. 3.
    Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Multimodal classification of alzheimer’s disease / mild cognitive impairment. NeuroImage 55(3), 856–867 (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    Sabuncu, M.R., Balci, S.K., Shenton, M.E., Golland, P.: Image-driven population analysis through mixture modeling. IEEE TMI 28(9), 1473–1487 (2009)Google Scholar
  5. 5.
    Leporé, N., Brun, C.A., Pennec, X., Chou, Y.-Y., Lopez, O.L., Aizenstein, H.J., Becker, J.T., Toga, A.W., Thompson, P.M.: Mean template for tensor-based morphometry using deformation tensors. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 826–833. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Leporé, N., Brun, C., Chou, Y.Y., Lee, A., Barysheva, M., De Zubicaray, G.I., Meredith, M., Macmahon, K., Wright, M., Toga, A.W., Thompson, P.M.: Multi-atlas tensor-based morphometry and its application to a genetic study of 92 twins. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) 2nd Workshop on MFCA, MICCAI 2008. LNCS, pp. 48–55. Springer (2008)Google Scholar
  7. 7.
    Koikkalainen, J., Lötjönen, J., Thurfjell, L., Rueckert, D., Waldemar, G., Soininen, H.: Multi-template tensor-based morphometry: Application to analysis of alzheimer’s disease. NeuroImage 56(3), 1134–1144 (2011)CrossRefGoogle Scholar
  8. 8.
    Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fan, Y., Shen, D., Gur, R.C., Gur, R.E., Davatzikos, C.: Compare: Classification of morphological patterns using adaptive regional elements. IEEE Trans. Med. Imaging 26(1), 93–105 (2007)CrossRefGoogle Scholar
  10. 10.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)Google Scholar
  11. 11.
    He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: NIPS, pp. 507–514. MIT Press, Cambridge (2006)Google Scholar
  12. 12.
    Bengio, Y.: Learning deep architectures for ai. Found. Trends Mach. Learn. 2(1), 1–127 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. PAMI 27(8), 1226–1238 (2005)CrossRefGoogle Scholar
  14. 14.
    Rakotomamonjy, A., Bach, F., Canu, S., Grandvalet, Y.: Simplemkl. Journal of Machine Learning Research 9 (November 2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rui Min
    • 1
  • Jian Cheng
    • 1
  • True Price
    • 1
  • Guorong Wu
    • 1
  • Dinggang Shen
    • 1
  1. 1.Department of Radiology and Biomedical Research Imaging Center (BRIC)University of North CarolinaChapel HillUSA

Personalised recommendations