A Method for Predicting the Outcomes of Combined Pharmacologic and Deep Brain Stimulation Therapy for Parkinson’s Disease

  • Reuben R. Shamir
  • Trygve Dolber
  • Angela M. Noecker
  • Anneke M. Frankemolle
  • Benjamin L. Walter
  • Cameron C. McIntyre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)


Deep brain stimulation (DBS) is an established therapy for the management of advanced Parkinson’s disease (PD). However, the coupled adjustment of pharmacologic therapy and stimulation parameter settings is a time-consuming process and treatment outcomes are not always optimal. In this study, we develop a linear function that relates the DBS parameters, the levodopa dosage, and patient-specific preoperative clinical data with the actual treatment motor outcomes. To this end, we incorporate image-based patient-specific computer models of the volume of tissue activated by DBS in a multi-linear regression analysis (6 PD patients; 60 follow up visits). The resulting predictor function was highly correlated with the actual motor outcomes (r = 0.76; p<0.05). These results demonstrate that the outcomes of a combined pharmacologic-DBS therapy can be predicted and may facilitate patient-specific treatment optimization for maximal benefits and minimal adverse effects.


Deep Brain Stimulation Subthalamic Nucleus Clinical Decision Support System Deep Brain Stimulation Surgery Multiple Comparison Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rodriguez-Oroz, M.C., Obeso, J.A., Lang, A.E., Houeto, J.-L., Pollak, P., Rehncrona, S., Kulisevsky, J., Albanese, A., Volkmann, J., Hariz, M.I., Quinn, N.P., Speelman, J.D., Guridi, J., Zamarbide, I., Gironell, A., Molet, J., Pascual-Sedano, B., Pidoux, B., Bonnet, A.M., Agid, Y., Xie, J., Benabid, A.-L., Lozano, A.M., Saint-Cyr, J., Romito, L., Contarino, M.F., Scerrati, M., Fraix, V., Van Blercom, N.: Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 128, 2240–2249 (2005)CrossRefGoogle Scholar
  2. 2.
    Castrioto, A., Lozano, A.M., Poon, Y.-Y., Lang, A.E., Fallis, M., Moro, E.: Ten-year outcome of subthalamic stimulation in Parkinson disease: a blinded evaluation. Arch. Neurol. 68, 1550–1556 (2011)CrossRefGoogle Scholar
  3. 3.
    Deuschl, G., Fogel, W., Hahne, M., Kupsch, A., Müller, D., Oechsner, M., Sommer, U., Ulm, G., Vogt, T., Volkmann, J.: Deep-brain stimulation for Parkinson’s disease. J. Neurol.  9(suppl.) , III/36–9 (2002)Google Scholar
  4. 4.
    Hunka, K., Suchowersky, O., Wood, S., Derwent, L., Kiss, Z.H.T.: Nursing time to program and assess deep brain stimulators in movement disorder patients. J. Neurosci. Nurs. 37, 204–210 (2005)CrossRefGoogle Scholar
  5. 5.
    McIntyre, C.C., Mori, S., Sherman, D.L., Thakor, N.V., Vitek, J.L.: Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin. Neurophysiol. 115, 589–595 (2004)CrossRefGoogle Scholar
  6. 6.
    Butson, C.R., Cooper, S.E., Henderson, J.M., McIntyre, C.C.: Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage 34, 661–670 (2007)CrossRefGoogle Scholar
  7. 7.
    Frankemolle, A.M.M., Wu, J., Noecker, A.M., Voelcker-Rehage, C., Ho, J.C., Vitek, J.L., McIntyre, C.C., Alberts, J.L.: Reversing cognitive-motor impairments in Parkinson’s disease patients using a computational modelling approach to deep brain stimulation programming. Brain 133, 746–761 (2010)CrossRefGoogle Scholar
  8. 8.
    Miocinovic, S., Lempka, S.F., Russo, G.S., Maks, C.B., Butson, C.R., Sakaie, K.E., Vitek, J.L., McIntyre, C.C.: Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation. Exp. Neurol. 216, 166–176 (2009)CrossRefGoogle Scholar
  9. 9.
    Chaturvedi, A., Butson, C.R., Lempka, S.F., Cooper, S.E., McIntyre, C.C.: Patient-specific models of deep brain stimulation: influence of field model complexity on neural activation predictions. Brain Stimul. 3, 65–67 (2010)CrossRefGoogle Scholar
  10. 10.
    Butson, C.R., Cooper, S.E., Henderson, J.M., Wolgamuth, B., McIntyre, C.C.: Probabilistic analysis of activation volumes generated during deep brain stimulation. Neuroimage 54, 2096–2104 (2011)CrossRefGoogle Scholar
  11. 11.
    Siderowf, A., McDermott, M., Kieburtz, K., Blindauer, K., Plumb, S., Shoulson, I.: Test-retest reliability of the unified Parkinson’s disease rating scale in patients with early Parkinson’s disease: results from a multicenter clinical trial. Mov. Disord. 17, 758–763 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Zaidel, A., Bergman, H., Ritov, Y., Md, Z.I.: Levodopa and subthalamic deep brain stimulation responses are not congruent. Mov. Disord. 25, 2379–2386 (2010)CrossRefGoogle Scholar
  13. 13.
    Tomlinson, C.L., Stowe, R., Patel, S., Rick, C., Gray, R., Clarke, C.E.: Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov. Disord. 25, 2649–2653 (2010)CrossRefGoogle Scholar
  14. 14.
    Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006)CrossRefGoogle Scholar
  15. 15.
    Keuken, M.C., Bazin, P.-L., Schäfer, A., Neumann, J., Turner, R., Forstmann, B.U.: Ultra-high 7T MRI of structural age-related changes of the subthalamic nucleus. J. Neurosci. 33, 4896–4900 (2013)CrossRefGoogle Scholar
  16. 16.
    Chaturvedi, A., Luján, J.L., McIntyre, C.C.: Artificial neural network based characterization of the volume of tissue activated during deep brain stimulation. J. Neural Eng. 10, 056023 (2013)Google Scholar
  17. 17.
    Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., Buatti, J., Aylward, S., Miller, J.V., Pieper, S., Kikinis, R.: 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30, 1323–1341 (2012)CrossRefGoogle Scholar
  18. 18.
    Miocinovic, S., Noecker, A.M., Maks, C.B., Butson, C.R., McIntyre, C.C.: Cicerone: stereotactic neurophysiological recording and deep brain stimulation electrode placement software system. Acta Neurochir. Suppl. 97, 561–567 (2007)CrossRefGoogle Scholar
  19. 19.
    Thenganatt, M.A., Jankovic, J.: Parkinson Disease Subtypes. JAMA Neurol (2014)Google Scholar
  20. 20.
    Morishita, T., Rahman, M., Foote, K.D., Fargen, K.M., Jacobson, C.E., Fernandez, H.H., Rodriguez, R.L., Malaty, I.A., Bowers, D., Hass, C.J., Katayama, Y., Yamamoto, T., Okun, M.S.: DBS candidates that fall short on a levodopa challenge test: alternative and important indications. Neurologist 17, 263–268 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Reuben R. Shamir
    • 1
  • Trygve Dolber
    • 1
  • Angela M. Noecker
    • 1
  • Anneke M. Frankemolle
    • 1
  • Benjamin L. Walter
    • 2
    • 3
  • Cameron C. McIntyre
    • 1
    • 2
  1. 1.Department of Biomedical EngineeringCase Western Reserve UniversityClevelandUSA
  2. 2.Department of NeurologyCase Western Reserve UniversityClevelandUSA
  3. 3.Neurological InstituteUniversity Hospitals Case Medical CenterClevelandUSA

Personalised recommendations