Advertisement

Automatic Polyp Detection Using Global Geometric Constraints and Local Intensity Variation Patterns

  • Nima Tajbakhsh
  • Suryakanth R. Gurudu
  • Jianming Liang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)

Abstract

This paper presents a new method for detecting polyps in colonoscopy. Its novelty lies in integrating the global geometric constraints of polyps with the local patterns of intensity variation across polyp boundaries: the former drives the detector towards the objects with curvy boundaries, while the latter minimizes the misleading effects of polyp-like structures. This paper makes three original contributions: (1) a fast and discriminative patch descriptor for precisely characterizing patterns of intensity variation across boundaries, (2) a new 2-stage classification scheme for accurately excluding non-polyp edges from an overcomplete edge map, and (3) a novel voting scheme for robustly localizing polyps from the retained edges. Evaluations on a public database and our own videos demonstrate that our method is promising and outperforms the state-of-the-art methods.

Keywords

Optical colonoscopy polyp detection boundary classification edge voting 

References

  1. 1.
    Karkanis, S.A., Iakovidis, D.K., Maroulis, D.E., Karras, D.A., Tzivras, M.: Computer-aided tumor detection in endoscopic video using color wavelet features. IEEE Transactions on Information Technology in Biomedicine 7(3), 141–152 (2003)CrossRefGoogle Scholar
  2. 2.
    Hwang, S., Oh, J., Tavanapong, W., Wong, J., de Groen, P.: Polyp detection in colonoscopy video using elliptical shape feature. In: IEEE International Conference on Image Processing, ICIP 2007, vol. 2, pp. II–465–II–468 (2007)Google Scholar
  3. 3.
    Tajbakhsh, N., Gurudu, S.R., Liang, J.: A classification-enhanced vote accumulation scheme for detecting colonic polyps. In: Yoshida, H., Warfield, S., Vannier, M.W. (eds.) Abdominal Imaging 2013. LNCS, vol. 8198, pp. 53–62. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Bernal, J., Sánchez, J., Vilariño, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recognition 45, 3166–3182 (2012)CrossRefGoogle Scholar
  5. 5.
    Park, S.Y., Sargent, D., Spofford, I., Vosburgh, K., A-Rahim, Y.: A colon video analysis framework for polyp detection. IEEE Transactions on Biomedical Engineering 59, 1408–1418 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nima Tajbakhsh
    • 1
  • Suryakanth R. Gurudu
    • 2
  • Jianming Liang
    • 1
  1. 1.Department of Biomedical InformaticsArizona State UniversityScottsdaleUSA
  2. 2.Division of Gastroenterology and HepatologyMayo ClinicScottsdaleUSA

Personalised recommendations