Determining Functional Units of Tongue Motion via Graph-Regularized Sparse Non-negative Matrix Factorization

  • Jonghye Woo
  • Fangxu Xing
  • Junghoon Lee
  • Maureen Stone
  • Jerry L. Prince
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)


Tongue motion during speech and swallowing involves synergies of locally deforming regions, or functional units. Motion clustering during tongue motion can be used to reveal the tongue’s intrinsic functional organization. A novel matrix factorization and clustering method for tissues tracked using tagged magnetic resonance imaging (tMRI) is presented. Functional units are estimated using a graph-regularized sparse non-negative matrix factorization framework, learning latent building blocks and the corresponding weighting map from motion features derived from tissue displacements. Spectral clustering using the weighting map is then performed to determine the coherent regions—i.e., functional units— defined by the tongue motion. Two-dimensional image data is used to verify that the proposed algorithm clusters the different types of images accurately. Three-dimensional tMRI data from five subjects carrying out simple non-speech/speech tasks are analyzed to show how the proposed approach defines a subject/task-specific functional parcellation of the tongue in localized regions.


Functional Unit Spectral Cluster Normalize Mutual Information Nonnegative Matrix Factorization Tongue Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Green, J.R.: Tongue-surface movement patterns during speech and swallowing. The Journal of the Acoustical Society of America 113(5), 2820–2833 (2003)CrossRefGoogle Scholar
  2. 2.
    Stone, M., Davis, E.P., Douglas, A.S., Aiver, M.N., Gullapalli, R., Levine, W.S., Lundberg, A.J.: Modeling tongue surface contours from cine-MRI images. Journal of Speech, Language, and Hearing Research 44(5), 1026 (2001)CrossRefGoogle Scholar
  3. 3.
    Bresch, E., Kim, Y.C., Nayak, K., Byrd, D., Narayanan, S.: Seeing speech: Capturing vocal tract shaping using real-time magnetic resonance imaging. IEEE Signal Processing Magazine 25(3), 123–132 (2008)CrossRefGoogle Scholar
  4. 4.
    Parthasarathy, V., Prince, J.L., Stone, M., Murano, E.Z., NessAiver, M.: Measuring tongue motion from tagged cine-MRI using harmonic phase (HARP) processing. The Journal of the Acoustical Society of America 121(1), 491–504 (2007)CrossRefGoogle Scholar
  5. 5.
    Stone, M., Epstein, M.A., Iskarous, K.: Functional segments in tongue movement. Clinical Linguistics & Phonetics 18(6-8), 507–521 (2004)CrossRefGoogle Scholar
  6. 6.
    Ramanarayanan, V., Goldstein, L., Narayanan, S.S.: Spatio-temporal articulatory movement primitives during speech production: Extraction, interpretation, and validation. JASA 134(2), 1378–1394 (2013)CrossRefzbMATHGoogle Scholar
  7. 7.
    Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(8), 1548–1560 (2011)CrossRefGoogle Scholar
  9. 9.
    Cheriyadat, A.M., Radke, R.J.: Non-negative matrix factorization of partial track data for motion segmentation. In: IEEE 12th International Conference on Computer Vision, pp. 865–872 (2009)Google Scholar
  10. 10.
    Qian, Y., Jia, S., Zhou, J., Robles-Kelly, A.: Hyperspectral unmixing via sparsity-constrained nonnegative matrix factorization. IEEE Transactions on Geoscience and Remote Sensing 49(11), 4282–4297 (2011)CrossRefGoogle Scholar
  11. 11.
    Elgammal, A., Lee, C.S.: The role of manifold learning in human motion analysis. In: Rosenhahn, B., Klette, R., Metaxas, D. (eds.) Human Motion. Computational Imaging and Vision, vol. 36, pp. 25–56. Springer, Netherlands (2008)CrossRefGoogle Scholar
  12. 12.
    Yang, S., Hou, C., Zhang, C., Wu, Y.: Robust non-negative matrix factorization via joint sparse and graph regularization for transfer learning. Neural Computing and Applications 23(2), 541–559 (2013)CrossRefGoogle Scholar
  13. 13.
    Lu, X., Wu, H., Yuan, Y., Yan, P., Li, X.: Manifold regularized sparse NMF for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing 51(5), 2815–2826 (2013)CrossRefGoogle Scholar
  14. 14.
    Von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4), 395–416 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)CrossRefGoogle Scholar
  16. 16.
    NessAiver, M., Prince, J.L.: Magnitude image CSPAMM reconstruction (MICSR). Magnetic Resonance in Medicine 50(2), 331–342 (2003)CrossRefGoogle Scholar
  17. 17.
    Xing, F., Woo, J., Murano, E.Z., Lee, J., Stone, M., Prince, J.L.: 3D tongue motion from tagged and cine MR images. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 41–48. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jonghye Woo
    • 1
    • 2
  • Fangxu Xing
    • 2
  • Junghoon Lee
    • 2
  • Maureen Stone
    • 1
  • Jerry L. Prince
    • 2
  1. 1.University of MarylandBaltimoreUSA
  2. 2.Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations