Advertisement

Estimating Dynamic Lung Images from High-Dimension Chest Surface Motion Using 4D Statistical Model

  • Tiancheng He
  • Zhong Xue
  • Nam Yu
  • Paige L. Nitsch
  • Bin S. Teh
  • Stephen T. Wong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)

Abstract

Computed Tomography (CT) has been widely used in image-guided procedures such as intervention and radiotherapy of lung cancer. However, due to poor reproducibility of breath holding or respiratory cycles, discrepancies between static images and patient’s current lung shape and tumor location could potentially reduce the accuracy for image guidance. Current methods are either using multiple intra-procedural scans or monitoring respiratory motion with tracking sensors. Although intra-procedural scanning provides more accurate information, it increases the radiation dose and still only provides snapshots of patient’s chest. Tracking-based breath monitoring techniques can effectively detect respiratory phases but have not yet provided accurate tumor shape and location due to low dimensional signals. Therefore, estimating the lung motion and generating dynamic CT images from real-time captured high-dimensional sensor signals acts as a key component for image-guided procedures. This paper applies a principal component analysis (PCA)-based statistical model to establish the relationship between lung motion and chest surface motion from training samples, on a template space, and then uses this model to estimate dynamic images for a new patient from the chest surface motion. Qualitative and quantitative results showed that the proposed high-dimensional estimation algorithm yielded more accurate 4D-CT compared to fiducial marker-based estimation.

Keywords

high-dimensional respiratory motion estimation statistical model 

References

  1. 1.
    Sundaram, T.A., Avants, B.B., Gee, J.C.: A dynamic model of average lung deformation using capacity-based reparameterization and shape averaging of lung MR images. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 1000–1007. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Vandemeulebroucke, J., Rit, S., Kybic, J., Clarysse, P., Sarrut, D.: Spatiotemporal motion estimation for respiratory-correlated imaging of the lungs. Med. Phys. 38, 166–178 (2011)CrossRefGoogle Scholar
  3. 3.
    Handels, H., Werner, R., Schmidt, R., Frenzel, T., Lu, W., Low, D., Ehrhardt, J.: 4D medical image computing and visualization of lung tumor mobility in spatio-temporal CT image data. Int. J. Med. Inform. 76(suppl. 3), S433–S439 (2007)Google Scholar
  4. 4.
    Wu, G., Wang, Q., Lian, J., Shen, D.: Estimating the 4D respiratory lung motion by spatiotemporal registration and building super-resolution image. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 532–539. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Klinder, T., Lorenz, C., Ostermann, J.: Prediction framework for statistical respiratory motion modeling. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 327–334. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Ehrhardt, J., Werner, R., Schmidt-Richberg, A., Handels, H.: Statistical modeling of 4D respiratory lung motion using diffeomorphic image registration. IEEE Trans. Med. Imag. 30, 251–265 (2011)CrossRefGoogle Scholar
  7. 7.
    Lu, W., Song, J.H., Christensen, G.E., Parikh, P.J., Zhao, T., Hubenschmidt, J.P., Bradley, J.D., Low, D.A.: Evaluating lung motion variations in repeated 4D CT studies using inverse consistent image registration. Int. J. Radiat. Oncol. 66, S606–S607 (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    Santelli, C., Nezafat, R., Goddu, B., Manning, W.J., Smink, J., Kozerke, S., Peters, D.C.: Respiratory Bellows Revisited for Motion Compensation: Preliminary Experience for Cardiovascular MR. Magnet. Reson. Med. 65, 1098–1103 (2011)CrossRefGoogle Scholar
  9. 9.
    He, T., Xue, Z., Xie, W., Wong, S.T.C.: Online 4-D CT estimation for patient-specific respiratory motion based on real-time breathing signals. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 392–399. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    He, T., Xue, Z., Lu, K., Valdivia y Alvarado, M., Wong, K.K., Xie, W., Wong, S.T.: A minimally invasive multimodality image-guided (MIMIG) system for peripheral lung cancer intervention and diagnosis. Comput. Med. Img. Grap. 36, 345–355 (2012)CrossRefGoogle Scholar
  11. 11.
    Tan, K.S., Saatchi, R., Elphick, H., Burke, D.: Real-time vision based respiration monitoring system. In: 7th International Symposium on Communication Systems Networks and Digital Signal Processing, pp. 770–774 (2010)Google Scholar
  12. 12.
    Xue, Z., Wong, K., Wong, S.T.C.: Joint registration and segmentation of serial lung CT images for image-guided lung cancer diagnosis and therapy. Comput. Med. Img. Grap. 34, 55–60 (2010)CrossRefGoogle Scholar
  13. 13.
    Alexander, D.C., Pierpaoli, C., Basser, P.J., Gee, J.C.: Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans. Med. Imag. 20, 1131–1139 (2001)CrossRefGoogle Scholar
  14. 14.
    Davatzikos, C., Shen, D., Mohamed, A., Kyriacou, S.K.: A framework for predictive modeling of anatomical deformations. IEEE Trans. Med. Imag. 20, 836–843 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tiancheng He
    • 1
  • Zhong Xue
    • 1
  • Nam Yu
    • 1
  • Paige L. Nitsch
    • 1
  • Bin S. Teh
    • 1
  • Stephen T. Wong
    • 1
  1. 1.Weill Cornell Medical CollegeHouston Methodist Research InstituteHoustonUS

Personalised recommendations