Advertisement

Motion Artefact Correction in Retinal Optical Coherence Tomography Using Local Symmetry

  • Alessio Montuoro
  • Jing Wu
  • Sebastian Waldstein
  • Bianca Gerendas
  • Georg Langs
  • Christian Simader
  • Ursula Schmidt-Erfurth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)

Abstract

Patient movements during the acquisition of SD-OCT scans create substantial motion artefacts in the volumetric data that hinder registration and 3D analysis and can be mistaken for pathologies. In this paper we propose a method to correct these artefacts using a single volume scan while still retaining the overall shape of the retina. The method was quantitatively validated using a set of synthetic SD-OCT volumes and qualitatively by a group of trained OCT grading experts on 100 SD-OCT scans. Furthermore, we compared the motion compensation estimation by the proposed method with a hardware eye tracker on 100 SD-OCT volumes.

Keywords

Optical Coherence Tomography Retinal Pigment Epithelium Optic Nerve Head Motion Correction Central Retinal Vein Occlusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., Chang, W., Hee, M.R., Flotire, T., Gregory, K., Puliafito, C.A., Fujimoto, J.G.: Optical coherence tomography. Science 254, 1178–1181 (1991)CrossRefGoogle Scholar
  2. 2.
    Potsaid, B., Gorczynska, I., Srinivasan, V.J., Chen, Y., Jiang, J., Cable, A., Fujimoto, J.G.: Ultrahigh speed spectral / fourier domain oct ophthalmic imaging at 70,000 to 312,500 axial scans per second. Optics Express 16, 15149–15169 (2008)CrossRefGoogle Scholar
  3. 3.
    Capps, A.G., Zawadzki, R.J., Yang, Q., Arathorn, D.W., Vogel, C.R., Hamann, B., Werner, J.S.: Correction of eye-motion artifacts in ao-oct data sets. In: Proc. SPIE, vol. 7885 (2011)Google Scholar
  4. 4.
    Xu, J., Ishikawa, H., Tolliver, D.A., Wollstein, G., Miller, G.L., Bilonick, R.A., Kagemann, L., Schuman, J.S.: Shape context algorithm applied to correct eye movement artifacts on three-dimensional (3d) spectral domain optical coherence tomography (sd-oct). Invest. Ophthalmol. Vis. Sci. 50(5), 1104 (2009)Google Scholar
  5. 5.
    Ricco, S., Chen, M., Ishikawa, H., Wollstein, G., Schuman, J.: Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 100–107. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Zawadzki, R.J., Fuller, A.R., Choi, S.S., Wiley, D.F., Hamann, B., Werner, J.S.: Correction of motion artifacts and scanning beam distortions in 3d ophthalmic optical coherence tomography imaging. In: Proc. SPIE, vol. 6426, pp. 642607–642611 (2007)Google Scholar
  7. 7.
    Tolliver, D.A., Ishikawa, H., Schuman, J., Miller, G.L.: An in-painting method for combining multiple sd-oct scans with applications to z-motion recovery, noise reduction and longitudinal studies. In: ARVO 2009 Annual Meeting Abstracts, vol. 50, 1100 Poster (May 2009)Google Scholar
  8. 8.
    Kraus, M.F., Potsaid, B., Mayer, M.A., Bock, R., Baumann, B., Liu, J.J., Hornegger, J., Fujimoto, J.G.: Motion correction in optical coherence tomography volumes on a per a-scan basis using orthogonal scan patterns. Biomed. Opt. Express 3(6), 1182–1199 (2012)CrossRefGoogle Scholar
  9. 9.
    Antony, B., Abràmoff, M.D., Tang, L., Ramdas, W.D., Vingerling, J.R., Jansonius, N.M., Lee, K., Kwon, Y.H., Sonka, M., Garvin, M.K.: Automated 3-d method for the correction of axial artifacts in spectral-domain optical coherence tomography images. Biomed. Opt. Express 2(8), 2403–2416 (2011)CrossRefGoogle Scholar
  10. 10.
    Xu, J., Ishikawa, H., Wollstein, G., Kagemann, L., Schuman, J.: Alignment of 3-d optical coherence tomography scans to correct eye movement using a particle filtering. IEEE Transactions on Medical Imaging 31(7), 1337–1345 (2012)CrossRefGoogle Scholar
  11. 11.
    Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging 23(4), 501–509 (2004)CrossRefGoogle Scholar
  12. 12.
    Serranho, P., Maduro, C., Santos, T., Cunha-Vaz, J., Bernardes, R.: Synthetic oct data for image processing performance testing. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 401–404. IEEE (2011)Google Scholar
  13. 13.
    Heidelberg Engineering: Spectralis® TruTrack, http://www.heidelbergengineering.com/us/products/spectralis-models/technology/trutrack-active-eye-tracking/ (accessed: February 18, 2014)

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alessio Montuoro
    • 1
  • Jing Wu
    • 1
  • Sebastian Waldstein
    • 1
  • Bianca Gerendas
    • 1
  • Georg Langs
    • 1
    • 2
  • Christian Simader
    • 1
  • Ursula Schmidt-Erfurth
    • 1
  1. 1.Christian Doppler Laboratory for Ophthalmic Image Analysis, Vienna Reading Center, Department of OphthalmologyMedical University of ViennaAustria
  2. 2.Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided TherapyMedical University of ViennaAustria

Personalised recommendations