Advertisement

Abstract

This paper develops a method for splines on diffeomorphisms for image regression. In contrast to previously proposed methods to capture image changes over time, such as geodesic regression, the method can capture more complex spatio-temporal deformations. In particular, it is a first step towards capturing periodic motions for example of the heart or the lung. Starting from a variational formulation of splines the proposed approach allows for the use of temporal control points to control spline behavior. This necessitates the development of a shooting formulation for splines. Experimental results are shown for synthetic and real data. The performance of the method is compared to geodesic regression.

Keywords

Spline Curve Adjoint System Euclidean Case Adjoint Variable Adjoint State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arnol’d, V.I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique. Ann. Inst. Fourier 16, 319–361 (1966)CrossRefGoogle Scholar
  2. 2.
    Bruveris, M., Gay-Balmaz, F., Holm, D., Ratiu, T.: The momentum map representation of images. Journal of Nonlinear Science 21(1), 115–150 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Camarinha, M., Leite, F.S., Crouch, P.: Splines of class ck on non-euclidean spaces. IMA Journal of Mathematical Control and Information 12(4), 399–410 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Gay-Balmaz, F., Holm, D.D., Meier, D.M., Ratiu, T.S., Vialard, F.X.: Invariant higher-order variational problems II. J. Nonlinear Science 22(4), 553–597 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Hinkle, J., Fletcher, P., Joshi, S.: Intrinsic polynomials for regression on Riemannian manifolds. Journal of Mathematical Imaging and Vision, 1–21 (2014)Google Scholar
  6. 6.
    Niethammer, M., Huang, Y., Vialard, F.-X.: Geodesic regression for image time-series. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 655–662. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Noakes, L., Heinzinger, G., Paden, B.: Cubic splines on curved spaces. IMA Journal of Mathematical Control and Information 6(4), 465–473 (1989)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Radau, P., Lu, Y., Connelly, K., Paul, G., Dick, A., Wright, G.: Evaluation framework for algorithms segmenting short axis cardiac MRI (July 2009)Google Scholar
  9. 9.
    Singh, N., Hinkle, J., Joshi, S., Fletcher, P.: A vector momenta formulation of diffeomorphisms for improved geodesic regression and atlas construction. In: ISBI, pp. 1219–1222 (2013)Google Scholar
  10. 10.
    Singh, N., Hinkle, J., Joshi, S., Fletcher, P.T.: A hierarchical geodesic model for diffeomorphic longitudinal shape analysis. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 560–571. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Trouvé, A., Vialard, F.X.: Shape splines and stochastic shape evolutions: A second order point of view. Quarterly of Applied Mathematics 70(2), 219–251 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Younes, L.: Shapes and Diffeomorphisms, vol. 171. Springer, Berlin (2010)Google Scholar
  13. 13.
    Younes, L., Arrate, F., Miller, M.I.: Evolution equations in computational anatomy. NeuroImage 45(1, suppl.), S40–S50 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nikhil Singh
    • 1
  • Marc Niethammer
    • 1
  1. 1.University of North CarolinaChapel HillUSA

Personalised recommendations