Advertisement

Longitudinal Alignment of Disease Progression in Fibrosing Interstitial Lung Disease

  • Wolf-Dieter Vogl
  • Helmut Prosch
  • Christina Müller-Mang
  • Ursula Schmidt-Erfurth
  • Georg Langs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)

Abstract

Generating disease progression models from longitudinal medical imaging data is a challenging task due to the varying and often unknown state and speed of disease progression at the time of data acquisition, the limited number of scans and varying scanning intervals. We propose a method for temporally aligning imaging data from multiple patients driven by disease appearance. It aligns follow-up series of different patients in time, and creates a cross-sectional spatio-temporal disease pattern distribution model. Similarities in the disease distribution guide an optimization process, regularized by temporal rigidity and disease volume terms. We demonstrate the benefit of longitudinal alignment by classifying instances of different fibrosing interstitial lung diseases. Classification results (AUC) of Usual Interstitial Pneumonia (UIP) versus non-UIP improve from AUC=0.71 to 0.78 following alignment, classification of UIP vs. Extrinsic Allergic Alveolitis (EAA) improves from 0.78 to 0.88.

Keywords

Idiopathic Pulmonary Fibrosis Interstitial Lung Disease Area Under Curve Usual Interstitial Pneumonia Dissimilarity Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    King Jr., T.E.: Clinical advances in the diagnosis and therapy of the interstitial lung diseases. American Journal of Respiratory and Critical Care Medicine 172(3), 268–279 (2005)CrossRefGoogle Scholar
  2. 2.
    Raghu, G., Collard, H.R., Egan, J.J., Martinez, F.J., Behr, J., Brown, K.K., Colby, T.V., et al.: An official ats/ers/jrs/alat statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. American Journal of Respiratory and Critical Care Medicine 183(6), 788–824 (2011)CrossRefGoogle Scholar
  3. 3.
    Hodnett, P.A., Naidich, D.P.: Fibrosing interstitial lung disease. A practical high-resolution computed tomography-based approach to diagnosis and management and a review of the literature. Am. J. Respir. Crit. Care Med. 188(2), 141–149 (2013)CrossRefGoogle Scholar
  4. 4.
    Arzhaeva, Y., Prokop, M., Murphy, K., van Rikxoort, E.M., de Jong, P.A., Gietema, H.A., Viergever, M.A., van Ginneken, B.: Automated estimation of progression of interstitial lung disease in ct images. Medical Physics 37(1), 63–73 (2009)CrossRefGoogle Scholar
  5. 5.
    Durrleman, S., Pennec, X., Trouvé, A., Braga, J., Gerig, G., Ayache, N.: Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape data. International Journal of Computer Vision 103(1), 22–59 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hart, G., Shi, Y., Zhu, H., Sanchez, M., Styner, M., Niethammer, M.: Dti longitudinal atlas construction as an average of growth models. In: MICCAI Workshop on Spatiotemporal Image Analysis for Longitudinal and Time-Series Image Data (2010)Google Scholar
  7. 7.
    Dittrich, E., Riklin Raviv, T., Kasprian, G., Donner, R., Brugger, P.C., Prayer, D., Langs, G.: A spatio-temporal latent atlas for semi-supervised learning of fetal brain segmentations and morphological age estimation. Med. Image Anal. 18(1), 9–21 (2014)CrossRefGoogle Scholar
  8. 8.
    Fonteijn, H.M., Clarkson, M.J., Modat, M., Barnes, J., Lehmann, M., Ourselin, S., Fox, N.C., Alexander, D.C.: An event-based disease progression model and its application to familial Alzheimer’s disease. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 748–759. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Mariolis, I., Korfiatis, P., Kalogeropoulou, C., Daoussis, D., Petsas, T., Costaridou, L.: Computer aided diagnosis of diffuse lung disease in multi-detector CT – selecting 3D texture features. In: Bamidis, P., Pallikarakis, N. (eds.) XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010. IFMBE Proceedings, vol. 29, pp. 208–211. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Avants, B.B., Yushkevich, P., Pluta, J., Minkoff, D., Korczykowski, M., Detre, J., Gee, J.C.: The optimal template effect in hippocampus studies of diseased populations. Neuroimage 49(3), 2457–2466 (2010)CrossRefGoogle Scholar
  11. 11.
    Bray, J.R., Curtis, J.T.: An ordination of the upland forest communities of southern wisconsin. Ecological Monographs 27(4), 325–349 (1957)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Wolf-Dieter Vogl
    • 1
  • Helmut Prosch
    • 2
  • Christina Müller-Mang
    • 2
  • Ursula Schmidt-Erfurth
    • 3
  • Georg Langs
    • 1
  1. 1.Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided TherapyMedical University ViennaAustria
  2. 2.Department of Biomedical Imaging and Image-guided TherapyMedical University ViennaAustria
  3. 3.Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and OptometryMedical University ViennaAustria

Personalised recommendations