Advertisement

Estimating Anatomically-Correct Reference Model for Craniomaxillofacial Deformity via Sparse Representation

  • Yi Ren
  • Li Wang
  • Yaozong Gao
  • Zhen Tang
  • Ken Chung Chen
  • Jianfu Li
  • Steve G. F. Shen
  • Jin Yan
  • Philip K. M. Lee
  • Ben Chow
  • James J. Xia
  • Dinggang Shen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)

Abstract

The success of craniomaxillofacial (CMF) surgery depends not only on the surgical techniques, but also upon an accurate surgical planning. However, surgical planning for CMF surgery is challenging due to the absence of a patient-specific reference model. In this paper, we present a method to automatically estimate an anatomically correct reference shape of jaws for the patient requiring orthognathic surgery, a common type of CMF surgery. We employ the sparse representation technique to represent the normal regions of the patient with respect to the normal subjects. The estimated representation is then used to reconstruct a patient-specific reference model with “restored” normal anatomy of the jaws. We validate our method on both synthetic subjects and patients. Experimental results show that our method can effectively reconstruct the normal shape of jaw for patients. Also, a new quantitative measurement is introduced to quantify the CMF deformity and validate the method in a quantitative approach, which is rarely used before.

Keywords

Reference Model Sparse Representation Orthognathic Surgery Statistical Shape Model Sparse Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Xia, J.J., Gateno, J., Teichgraeber, J.F.: New clinical protocol to evaluate craniomaxillofacial deformity and plan surgical correction. J. Oral Maxillofac. Surg. 67(10), 2093–2106 (2009)CrossRefGoogle Scholar
  2. 2.
    Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D.N., Zhou, X.S.: Towards robust and effective shape modeling: Sparse shape composition. Medical Image Analysis 16(1), 265–277 (2012)zbMATHCrossRefGoogle Scholar
  3. 3.
    Starck, J.L., Elad, M., Donoho, D.L.: Image decomposition via the combination of sparse representations and a variational approach. IEEE Transactions on Image Processing 14(10), 1570–1582 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Donoho, D.L.: For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics 59(6), 797–829 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Blanz, V., Mehl, A., Vetter, T., Seidel, H.P.: A statistical method for robust 3d surface reconstruction from sparse data. In: Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 3DPVT 2004, pp. 293–300. IEEE (2004)Google Scholar
  6. 6.
    Yokota, F., Okada, T., Takao, M., Sugano, N., Tada, Y., Tomiyama, N., Sato, Y.: Automated CT segmentation of diseased hip using hierarchical and conditional statistical shape models. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 190–197. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Zachow, S., Lamecker, H., Elsholtz, B., Stiller, M.: Reconstruction of mandibular dysplasia using a statistical 3d shape model. In: International Congress Series, vol. 1281, pp. 1238–1243. Elsevier (2005)Google Scholar
  8. 8.
    Swennen, G.R., Schutyser, F.A., Hausamen, J.E.: Three-dimensional cephalometry: a color atlas and manual. Springer (2005)Google Scholar
  9. 9.
    Xia, J.J., McGrory, J.K., Gateno, J., Teichgraeber, J.F., Dawson, B.C., Kennedy, K.A., Lasky, R.E., English, J.D., Kau, C.H., McGrory, K.R.: A new method to orient 3-dimensional computed tomography models to the natural head position: a clinical feasibility study. J. Oral Maxillofac. Surg. 69(3), 584–591 (2011)CrossRefGoogle Scholar
  10. 10.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 267–288 (1996)Google Scholar
  11. 11.
    Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. on Pattern Analysis and Machine Intelligence 11(6), 567–585 (1989)zbMATHCrossRefGoogle Scholar
  12. 12.
    Wang, L., et al.: Automated segmentation of CBCT image using spiral CT atlases and convex optimization. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 251–258. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yi Ren
    • 1
    • 2
  • Li Wang
    • 1
  • Yaozong Gao
    • 1
    • 2
  • Zhen Tang
    • 3
  • Ken Chung Chen
    • 3
  • Jianfu Li
    • 3
  • Steve G. F. Shen
    • 4
  • Jin Yan
    • 4
  • Philip K. M. Lee
    • 5
  • Ben Chow
    • 5
  • James J. Xia
    • 3
    • 4
  • Dinggang Shen
    • 1
  1. 1.Department of Radiology and BRICUniversity of North CarolinaChapel HillUSA
  2. 2.Department of Computer ScienceUniversity of Northe CarolinaChapel HillUSA
  3. 3.Department of Oral and Maxillofacial Surgery, Houston Methodist Research InstituteWeill Medical College of Cornell UniversityNew YorkUSA
  4. 4.Department of Oral and Craniomaxillofacial Science, Shanghai Ninth HospitalShanghai Jiao Tong University School of MedicineChina
  5. 5.Hong Kong Dental Implant & Maxillofacial CenterHong KongChina

Personalised recommendations