In vivo Estimation of Dispersion Anisotropy of Neurites Using Diffusion MRI

  • Maira Tariq
  • Torben Schneider
  • Daniel C. Alexander
  • Claudia A. M. Wheeler-Kingshott
  • Hui Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8675)


We present a technique for mapping dispersion anisotropy of neurites in the human brain in vivo. Neurites are the structural substrate of the brain that support its function. Measures of their morphology from histology provide the gold standard for diagnosing various brain disorders. Some of these measures, e.g. neurite density and orientation dispersion, can now be mapped in vivo using diffusion MRI, enabling their use in clinical applications. However, in vivo methods for estimating more sophisticated measures, such as dispersion anisotropy, have yet to be demonstrated. Dispersion anisotropy allows more refined characterisation of the complex neurite configurations such as fanning or bending axons; its quantification in vivo can offer new imaging markers. The aim of this work is to develop a method to estimate dispersion anisotropy in vivo. Our approach builds on the Neurite Orientation Dispersion and Density Imaging (NODDI), an existing clinically feasible diffusion MRI technique. The estimation of dispersion anisotropy is achieved by incorporating Bingham distribution as the neurite orientation distribution function, with no additional acquisition requirements. We show the first in vivo maps of dispersion anisotropy and demonstrate that it can be estimated accurately with a clinically feasible protocol. We additionally show that the original NODDI is robust to the effects of dispersion anisotropy, when the the new parameter is not of interest.


Orientation Distribution Orientation Distribution Function Focal Cortical Dysplasia Bayesian Information Criterion Dominant Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Conel, J.L.: The postnatal development of the human cerebral cortex. Harvard University Press, Cambridge (1939)Google Scholar
  2. 2.
    Jacobs, B., Schall, M., Prather, M., Kapler, E., Driscoll, L., Baca, S., Jacobs, J., Ford, K., Wainwright, M., Treml, M.: Regional dendritic and spine variation in human cerebral cortex: a quantitative Golgi study. Cerebral Cortex 11, 558–571 (2001)CrossRefGoogle Scholar
  3. 3.
    Fiala, J.C., Spacek, J., Harris, K.M.: Review: Dendritic spine pathology: Cause or consequence of neurological disorders. Brain Research Reviews 39, 29–54 (2002)CrossRefGoogle Scholar
  4. 4.
    Basser, P.J., Mattiello, J., LeBihan, D.L.: MR diffusion tensor spectroscopy and imaging. Biophysical Journal 66, 259–267 (1994)CrossRefGoogle Scholar
  5. 5.
    Jespersen, S.N., Kroenke, C.D., Østergaard, L., Ackerman, J.J.H., Yablonskiy, D.A.: Modeling dendrite density from magnetic resonance diffusion measurements. NeuroImage 34, 1473–1486 (2007)CrossRefGoogle Scholar
  6. 6.
    Jespersen, S.N., Bjarkam, C.R., Nyengaard, J.R., Chakravarty, M.M., Hansen, B., Vosegaard, T., Østergaard, L., Yablonskiy, D.A., Nielsen, N.C., Vestergaard-Poulsen, P.: Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparison with light microscopy and electron microscopy. NeuroImage 49, 205–216 (2010)CrossRefGoogle Scholar
  7. 7.
    Zhang, H., Schneider, T., Wheeler-Kingshott, C.A.M., Alexander, D.C.: NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61, 1000–1016 (2012)CrossRefGoogle Scholar
  8. 8.
    Winston, G.P., Micallef, C., Symms, M.R., Alexander, D.C., Duncan, J.S., Zhang, H.: Advanced diffusion imaging sequences could aid assessing patients with focal cortical dysplasia and epilepsy. Epilepsy Research 108, 336–339 (2014)CrossRefGoogle Scholar
  9. 9.
    Kunz, N., Zhang, H., Vasung, L., O’Brien, K.R., Assaf, Y., Lazeyras, F., Alexander, D.C., Hüppi, P.S.: Assessing white matter microstructure of the newborn with multi-shell diffusion MRI and biophysical compartment models. NeuroImage 96, 288–299 (2014)CrossRefGoogle Scholar
  10. 10.
    Mardia, K.V., Jupp, P.E.: Directional statistics. Wiley series in probability and statistics. John Wiley & Sons, Ltd. (1990)Google Scholar
  11. 11.
    Sotiropoulos, S.N., Behrens, T.E., Jbabdi, S.: Ball and rackets: Inferring fiber fanning from diffusion-weighted MRI. NeuroImage 60, 1412–1425 (2012)CrossRefGoogle Scholar
  12. 12.
    Jespersen, S.N., Leigland, L.A., Cornea, A., Kroenke, C.D.: Determination of axonal and dendritic orientation distributions within the developing cerebral cortex by diffusion tensor imaging. IEEE Transactions in Medical Imaging 31, 16–32 (2012)CrossRefGoogle Scholar
  13. 13.
    Rowe, M.C., Zhang, H., Oxtoby, N., Alexander, D.C.: Beyond crossing fibers: Tractography exploiting sub-voxel fibre dispersion and neighbourhood structure. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 402–413. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Kaden, E., Knösche, T.R., Anwander, A.: Parametric spherical deconvolution: Inferring anatomical connectivity using diffusion MR imaging. NeuroImage 37, 474–488 (2007)CrossRefGoogle Scholar
  15. 15.
    Westin, C.-F., Maier, S.E., Mamata, H., Nabavi, A., Jolesz, F.A., Kikinis, R.: Processing and visualization for diffusion tensor MRI. Medical Image Analysis 6, 93–108 (2002)CrossRefGoogle Scholar
  16. 16.
    Ferizi, U., Schneider, T., Tariq, M., Wheeler-Kingshott, C.A.M., Zhang, H., Alexander, D.C.: The importance of being dispersed: A ranking of diffusion MRI models for fibre dispersion using in vivo human brain data. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 74–81. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Feinberg, D.A., Moeller, S., Smith, S.M., Auerbach, E., Ramanna, S., Gunther, M., Glasser, M.F., Miller, K.L., Ugurbil, K., Yacoub, E.: Multiplexed Echo Planar Imaging for sub-second whole brain fMRI and fast diffusion imaging. PLoS One 5, e15710 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Maira Tariq
    • 1
  • Torben Schneider
    • 2
  • Daniel C. Alexander
    • 1
  • Claudia A. M. Wheeler-Kingshott
    • 2
  • Hui Zhang
    • 1
  1. 1.Centre for Medical Image Computing and Department of Computer ScienceUniversity College LondonUnited Kingdom
  2. 2.NMR Research Unit, Department of Neuroinflammation, Institute of NeurologyUniversity College LondonUnited Kingdom

Personalised recommendations