Advertisement

Complete Set of Invariants of a 4th Order Tensor: The 12 Tasks of HARDI from Ternary Quartics

  • Théo Papadopoulo
  • Aurobrata Ghosh
  • Rachid Deriche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8675)

Abstract

Invariants play a crucial role in Diffusion MRI. In DTI (2 nd order tensors), invariant scalars (FA, MD) have been successfully used in clinical applications. But DTI has limitations and HARDI models (e.g. 4 th order tensors) have been proposed instead. These, however, lack invariant features and computing them systematically is challenging.

We present a simple and systematic method to compute a functionally complete set of invariants of a non-negative 3D 4 th order tensor with respect to SO 3. Intuitively, this transforms the tensor’s non-unique ternary quartic (TQ) decomposition (from Hilbert’s theorem) to a unique canonical representation independent of orientation – the invariants.

The method consists of two steps. In the first, we reduce the 18 degrees-of-freedom (DOF) of a TQ representation by 3-DOFs via an orthogonal transformation. This transformation is designed to enhance a rotation-invariant property of choice of the 3D 4 th order tensor. In the second, we further reduce 3-DOFs via a 3D rotation transformation of coordinates to arrive at a canonical set of invariants to SO 3 of the tensor.

The resulting invariants are, by construction, (i) functionally complete, (ii) functionally irreducible (if desired), (iii) computationally efficient and (iv) reversible (mappable to the TQ coefficients or shape); which is the novelty of our contribution in comparison to prior work.

Results from synthetic and real data experiments validate the method and indicate its importance.

Keywords

Invariants SO3 4th order tensors ternary quartics orthogonal & rotation transforms canonical representation 

References

  1. 1.
    Basser, P.J.: Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR in Biomedicine 8, 333–344 (1995)CrossRefGoogle Scholar
  2. 2.
    Özarslan, E., Vemuri, B.C., Mareci, T.H.: Generalized scalar measures for diffusion MRI using trace, variance and entropy. Mag. Res. in Med. 53(4), 866–876 (2005)CrossRefGoogle Scholar
  3. 3.
    Tuch, D.: Q-ball imaging. Mag. Res. in Med. 52(6), 1358–1372 (2004)CrossRefGoogle Scholar
  4. 4.
    Qi, L., Han, D., Wu, E.: Principal invariants and inherent parameters of diffusion kurtosis tensors. J. of Math.l Anal. and Ap. 349(1), 165–180 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Fuster, A., van de Sande, J., Astola, L., Poupon, C., Velterop, J., Romeny, B.M.t.H.: Fourth-order Tensor Invariants in High Angular Resolution Diffusion Imaging. In: Zhang, G., Adluru, N (eds.) CDMRI Workshop, MICCAI. LNCS, vol. 6891. Springer (2011)Google Scholar
  6. 6.
    Ghosh, A., Papadopoulo, T., Deriche, R.: Biomarkers for HARDI: 2nd & 4th order tensor invariants. ISBI, Barcelona (May 2012)Google Scholar
  7. 7.
    Ghosh, A., Papadopoulo, T., Deriche, R.: Generalized invariants of a 4th order tensor: Building blocks for new biomarkers in dMRI. In: Panagiotaki, E., ODonnell, L., Schultz, T., Zhang, G.H. (eds.) CDMRI Workshop, MICCAI, pp. 165–173 (2012)Google Scholar
  8. 8.
    Schwab, E., Çetingül, H.E., Afsari, B., Yassa, M.A., Vidal, R.: Rotation invariant features for HARDI. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 705–717. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Barmpoutis, A., Hwang, M.S., Howland, D., Forder, J.R., Vemuri, B.C.: Regularized positive-definite fourth-order tensor field estimation from DW-MRI. NeuroImage 45(1), S153–S162 (2009)Google Scholar
  10. 10.
    Ghosh, A., Moakher, M., Deriche, R.: Ternary quartic approach for positive 4th order diffusion tensors revisited. ISBI: From Nano to Macro, pp. 618–621 (June 2009)Google Scholar
  11. 11.
    Barmpoutis, A., Zhuo, J.: Diffusion kurtosis imaging: Robust estimation from DW-MRI using homogeneous polynomials. In: ISBI 2011, pp. 262–265 (2011)Google Scholar
  12. 12.
    Anwander, A., Tittgemeyer, M., von Cramon, D.Y., Friederici, A.D., Knosche, T.R.: Connectivity-Based Parcellation of Broca’s Area. Cerebral Cortex 17(4), 816–825 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Théo Papadopoulo
    • 1
  • Aurobrata Ghosh
    • 1
  • Rachid Deriche
    • 1
  1. 1.Athena Project TeamInria Sophia Antipolis - MéditerranéeFrance

Personalised recommendations