Compact and Informative Representation of Functional Connectivity for Predictive Modeling

  • Raif M. Rustamov
  • David Romano
  • Allan L. Reiss
  • Leonidas J. Guibas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8675)


Resting state functional connectivity holds great potential for diagnostic prediction of neurological and psychiatric illness. This paper introduces a compact and information-rich representation of connectivity that is geared directly towards predictive modeling. Our representation does not require a priori identification of localized regions of interest, yet provides a mechanism for interpretation of classifier weights. Experiments confirm increased accuracy associated with our representation and yield interpretations consistent with known physiology.


Support Vector Machine Functional Connectivity Linear Discriminant Analysis Blood Oxygenation Level Dependent Blood Oxygenation Level Dependent Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Belkin, M., Niyogi, P.: Semi-supervised learning on riemannian manifolds. Machine Learning 56(1-3), 209–239 (2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    Castellanos, F.X., Martino, A.D., Craddock, R.C., Mehta, A.D., Milham, M.P.: Clinical applications of the functional connectome. NeuroImage 80, 527–540 (2013)CrossRefGoogle Scholar
  3. 3.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1 – 27:27 (2011)Google Scholar
  4. 4.
    Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society (1997)Google Scholar
  5. 5.
    Fornito, A., Zalesky, A., Breakspear, M.: Graph analysis of the human connectome: Promise, progress, and pitfalls. NeuroImage 80, 426–444 (2013)CrossRefGoogle Scholar
  6. 6.
    Liu, D., Dong, Z., Zuo, X., Wang, J., Zang, Y.: Eyes-open/eyes-closed dataset sharing for reproducibility evaluation of resting state fMRI data analysis methods. Neuroinformatics 11(4), 469–476 (2013)CrossRefGoogle Scholar
  7. 7.
    Patriat, R., Molloy, E.K., Meier, T.B., Kirk, G.R., Nair, V.A., Meyerand, M.E., Prabhakaran, V., Birn, R.M.: The effect of resting condition on resting-state fMRI reliability and consistency: A comparison between resting with eyes open, closed, and fixated. NeuroImage 78, 463–473 (2013)CrossRefGoogle Scholar
  8. 8.
    Pirsiavash, H., Ramanan, D., Fowlkes, C.: Bilinear classifiers for visual recognition. In: NIPS, pp. 1482–1490 (2009)Google Scholar
  9. 9.
    Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1), 273–289 (2002)CrossRefGoogle Scholar
  10. 10.
    Varoquaux, G., Craddock, R.C.: Learning and comparing functional connectomes across subjects. NeuroImage 80, 405–415 (2013)CrossRefGoogle Scholar
  11. 11.
    Whitfield-Gabrieli, S.L., Nieto-Castanon, A.: Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity 2(3), 125–141 (2012)CrossRefGoogle Scholar
  12. 12.
    Xu, P., Huang, R., Wang, J., Dam, N.T.V., Xie, T., Dong, Z., Chen, C., Gu, R., Zang, Y.F., He, Y., Fan, J., Luo, Y.: Different topological organization of human brain functional networks with eyes open versus eyes closed. NeuroImage 90 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Raif M. Rustamov
    • 1
  • David Romano
    • 2
  • Allan L. Reiss
    • 2
  • Leonidas J. Guibas
    • 1
  1. 1.Computer Science DepartmentStanford UniversityStanfordUSA
  2. 2.Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral SciencesStanford University School of MedicineStanfordUSA

Personalised recommendations