Advertisement

New Partial Volume Estimation Methods for MRI MP2RAGE

  • Quentin Duché
  • Parnesh Raniga
  • Gary F. Egan
  • Oscar Acosta
  • Giulio Gambarota
  • Olivier Salvado
  • Hervé Saint-Jalmes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8675)

Abstract

Magnetic resonance imaging (MRI) is commonly used as a medical diagnosis tool, especially for brain applications. Some limitations affecting image quality include receive field (RF) inhomogeneity and partial volume (PV) effects which arise when a voxel contains two different tissues, introducing blurring. The novel Magnetization-Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) provides an image robust to RF inhomogeneity. However, PV effects are still an issue for automated brain quantification. PV estimation methods have been proposed based on computing the proportion of one tissue with respect to the other using linear interpolation of pure tissue intensity means. We demonstrated that this linear model introduces bias when used with MP2RAGE and we propose two novel solutions. The PV estimation methods were tested on 4 MP2RAGE data sets.

Keywords

MP2RAGE Partial Volume Estimation Bi-exponential model 

References

  1. 1.
    Acosta, O., et al.: Cortical surface mapping using topology correction, partial flattening and 3D shape context-based non-rigid registration for use in quantifying atrophy in Alzheimer’s disease. Journal of Neuroscience Methods (2011)Google Scholar
  2. 2.
    Rueda, A., et al.: Topology-corrected segmentation and local intensity estimates for improved partial volume classification of brain cortex in MRI. Journal of Neuroscience Methods 188, 305–315 (2010)CrossRefGoogle Scholar
  3. 3.
    Doré, V., et al.: Cross-sectional and longitudinal analysis of the relationship between Aβ deposition, cortical thickness, and memory in cognitively unimpaired individuals and in alzheimer disease. JAMA Neurology 70(7), 903–911 (2013)CrossRefGoogle Scholar
  4. 4.
    Marques, J., et al.: MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 49(2), 1271–1281 (2010)CrossRefGoogle Scholar
  5. 5.
    Ballester, A.M., et al.: Segmentation and measurement of brain structures in MRI including confidence bounds. Convergence 4, 189–200 (2000)Google Scholar
  6. 6.
    Leemput, K.V., et al.: A Unifying Framework for Partial Volume Segmentation of Brain MR Images 18(10), 897–908 (October 1999)Google Scholar
  7. 7.
    Shattuck, D.W., et al.: Magnetic resonance image tissue classification using a partial volume model. NeuroImage M, 856–876 (2001)CrossRefGoogle Scholar
  8. 8.
    Manjón, J., et al.: Improved estimates of partial volume coefficients from noisy brain MRI using spatial context. Neuroimage 53(2), 480–490 (2010)CrossRefGoogle Scholar
  9. 9.
    Tohka, J., et al.: Fast and robust parameter estimation for statistical partial volume model in MRI. NeuroImage 23, 84–97 (2004)CrossRefGoogle Scholar
  10. 10.
    Mugler, J.P., Brookeman, J.R.: Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magnetic Resonance in Medicine 15(1), 152–157 (1990)CrossRefGoogle Scholar
  11. 11.
    Acosta, O., et al.: Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps. Medical Image Analysis 13(5), 730–743 (2009)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Duché, Q., Acosta, O., Gambarota, G., Merlet, I., Salvado, O., Saint-Jalmes, H.: Bi-exponential magnetic resonance signal model for partial volume computation. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 231–238. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Whittall, K.P., et al.: In vivo measurement of T2 distributions and water contents in normal human brain. Magnetic Resonance in Medicine 37(1), 34–43 (1997)CrossRefGoogle Scholar
  14. 14.
    Rooney, W.D., et al.: Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo 318, 308–318 (2007)Google Scholar
  15. 15.
    Fujimoto, K., et al.: Quantitative comparison of cortical surface reconstructions from MP2RAGE and multi-echo MPRAGE data at 3 and 7T. NeuroImage (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Quentin Duché
    • 1
    • 2
    • 3
    • 5
  • Parnesh Raniga
    • 5
    • 6
  • Gary F. Egan
    • 6
  • Oscar Acosta
    • 1
    • 2
  • Giulio Gambarota
    • 1
    • 2
    • 3
  • Olivier Salvado
    • 5
  • Hervé Saint-Jalmes
    • 1
    • 2
    • 3
    • 4
  1. 1.Université de Rennes 1, LTSIRennesFrance
  2. 2.INSERM, U1099RennesFrance
  3. 3.PRISM - Biosit, CNRS UMS 3480 - BiogenouestRennesFrance
  4. 4.CRLCC, Centre Eugène MarquisRennesFrance
  5. 5.The Australian E-Health Research Centre, CSIRO Preventative Health Flagship, CSIRO Computational InformaticsHerstonAustralia
  6. 6.Monash Biomedical ImagingMelbourneAustralia

Personalised recommendations