Bayesian Principal Geodesic Analysis in Diffeomorphic Image Registration

  • Miaomiao Zhang
  • P. Thomas Fletcher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8675)


Computing a concise representation of the anatomical variability found in large sets of images is an important first step in many statistical shape analyses. In this paper, we present a generative Bayesian approach for automatic dimensionality reduction of shape variability represented through diffeomorphic mappings. To achieve this, we develop a latent variable model for principal geodesic analysis (PGA) that provides a probabilistic framework for factor analysis on diffeomorphisms. Our key contribution is a Bayesian inference procedure for model parameter estimation and simultaneous detection of the effective dimensionality of the latent space. We evaluate our proposed model for atlas and principal geodesic estimation on the OASIS brain database of magnetic resonance images. We show that the automatically selected latent dimensions from our model are able to reconstruct unseen brain images with lower error than equivalent linear principal components analysis (LPCA) models in the image space, and it also outperforms tangent space PCA (TPCA) models in the diffeomorphism setting.


Image Registration Latent Variable Model Average Mean Square Error Geodesic Path Shape Variability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Allassonnière, S., Kuhn, E.: Stochastic algorithm for parameter estimation for dense deformable template mixture model. ESAIM-PS 14, 382–408 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bishop, C.M.: Bayesian pca. Advances in Neural Information Processing Systems, 382–388 (1999)Google Scholar
  3. 3.
    Fletcher, P.T., Lu, C., Joshi, S.: Statistics of shape via principal geodesic analysis on Lie groups. In: Computer Vision and Pattern Recognition, pp. 95–101 (2003)Google Scholar
  4. 4.
    Gerber, S., Tasdizen, T., Fletcher, P.T., Joshi, S., Whitaker, R.: Manifold modeling for brain population analysis. Medical Image Analysis 14(5), 643–653 (2010)CrossRefGoogle Scholar
  5. 5.
    Gori, P., et al.: Bayesian atlas estimation for the variability analysis of shape complexes. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 267–274. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23(suppl. 1), 151–160 (2004)CrossRefGoogle Scholar
  7. 7.
    Ma, J., Miller, M.I., Trouvé, A., Younes, L.: Bayesian template estimation in computational anatomy. NeuroImage 42, 252–261 (2008)CrossRefGoogle Scholar
  8. 8.
    Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. Journal of Mathematical Imaging and Vision 24(2), 209–228 (2006)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Qiu, A., Younes, L., Miller, M.I.: Principal component based diffeomorphic surface mapping. IEEE Transactions on Medical Imaging 31(2), 302–311 (2012)CrossRefGoogle Scholar
  10. 10.
    Simpson, I.J.A., Schnabel, J.A., Groves, A.R., Andersson, J.L.R., Woolrich, M.W.: Probabilistic inference of regularisation in non-rigid registration. NeuroImage 59, 2438–2451 (2012)CrossRefGoogle Scholar
  11. 11.
    Singh, N., Hinkle, J., Joshi, S., Fletcher, P.T.: A vector momenta formulation of diffeomorphisms for improved geodesic regression and atlas construction. In: International Symposium on Biomedical Imaging, pp. 1219–1222 (2013)Google Scholar
  12. 12.
    Twining, C.J., Cootes, T.F., Marsland, S., Petrovic, V., Schestowitz, R., Taylor, C.J.: A unified information-theoretic approach to groupwise non-rigid registration and model building. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 1–14. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Vaillant, M., Miller, M.I., Younes, L., Trouvé, A.: Statistics on diffeomorphisms via tangent space representations. NeuroImage 23, S161–S169 (2004)Google Scholar
  14. 14.
    Vialard, F.X., Risser, L., Holm, D., Rueckert, D.: Diffeomorphic atlas estimation using Kärcher mean and geodesic shooting on volumetric images. In: MIUA (2011)Google Scholar
  15. 15.
    Vialard, F.X., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3d image registration via geodesic shooting using an efficient adjoint calculation. International Journal of Computer Vision, 229–241 (2012)Google Scholar
  16. 16.
    Younes, L., Arrate, F., Miller, M.: Evolutions equations in computational anatomy. NeuroImage, 40–50 (2009)Google Scholar
  17. 17.
    Zhang, M., Fletcher, P.T.: Probabilistic principal geodesic analysis. In: Advances in Neural Information Processing Systems, pp. 1178–1186 (2013)Google Scholar
  18. 18.
    Zhang, M., Singh, N., Fletcher, P.T.: Bayesian estimation of regularization and atlas building in diffeomorphic image registration. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 37–48. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Miaomiao Zhang
    • 1
  • P. Thomas Fletcher
    • 1
  1. 1.School of ComputingUniversity of UtahSalt Lake CityUSA

Personalised recommendations