Advertisement

Generalized Multiresolution Hierarchical Shape Models via Automatic Landmark Clusterization

  • Juan J. Cerrolaza
  • Arantxa Villanueva
  • Mauricio Reyes
  • Rafael Cabeza
  • Miguel Angel González Ballester
  • Marius George Linguraru
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8675)

Abstract

Point Distribution Models (PDM) are some of the most popular shape description techniques in medical imaging. However, to create an accurate shape model it is essential to have a representative sample of the underlying population, which is often challenging. This problem is particularly relevant as the dimensionality of the modeled structures increases, and becomes critical when dealing with complex 3D shapes. In this paper, we introduce a new generalized multiresolution hierarchical PDM (GMRH-PDM) able to efficiently address the high-dimension-low-sample-size challenge when modeling complex structures. Unlike previous approaches, our new and general framework extends hierarchical modeling to any type of structure (multi- and single-object shapes) allowing to describe efficiently the shape variability at different levels of resolution. Importantly, the configuration of the algorithm is automatized thanks to the new agglomerative landmark clustering method presented here. Our new and automatic GMRH-PDM framework performed significantly better than classical approaches, and as well as the state-of-the-art with the best manual configuration. Evaluations have been studied for two different cases, the right kidney, and a multi-object case composed of eight subcortical structures.

Keywords

Shape models multiresolution hierarchical models PDM 

References

  1. 1.
    Cootes, T.F., et al.: Active Shape ModelsTheir Training and Application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)CrossRefGoogle Scholar
  2. 2.
    Davatzikos, C., et al.: Hierarchical active shape models, using the wavelet transform. IEEE Trans. on Med. Imag. 22(3), 414–423 (2003)CrossRefGoogle Scholar
  3. 3.
    Cerrolaza, J.J., et al.: Hierarchical Statistical Shape Models of Multiobject Anatomical Structures: Application to Brain MRI. IEEE Trans. Med. Imaging 31(3), 71–724 (2012)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Lu, C., et al.: Statistical multi-object shape models. Int. J. Comput. Vis. 75, 387–404 (2007)CrossRefGoogle Scholar
  5. 5.
    Cerrolaza, J.J., Herrezuelo, N.C., Villanueva, A., Cabeza, R., González Ballester, M.A., Linguraru, M.G.: Multiresolution Hierarchical Shape Models in 3D Subcortical Brain Structures. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 641–648. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Lounsbery, M., et al.: Multiresolution Analysis for Surfaces of Arbitrary Topological Type. ACM Trans. Graph. 16(1), 34–73 (1997)CrossRefGoogle Scholar
  7. 7.
    Dyn, N., et al.: A Butterfly Subdivision Scheme for Surface Interpolation with Tension Control. ACM Trans. Graph. 9(2), 160–169 (1990)CrossRefzbMATHGoogle Scholar
  8. 8.
    Praun, E., Hoppe, H.: Spherical Parametrization and Remeshing. ACM Trans. Graph. (SIGGRAPH) 22(3), 340–349 (2003)Google Scholar
  9. 9.
    Roy, T., et al.: Segmentation of a vector field: dominant parameter and shape optimization. Journal of Mathematical Imaging and Vision 24(2), 259–276 (2006)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Reyes, M., et al.: Anatomical variability of organs via principal factor analysis from the construction of an abdominal probabilistic atlas. IEEE Symp. Bio. Imag., 682–685 (2009)Google Scholar
  11. 11.
    Ward, J.H.: Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association 58, 236–244 (1963)CrossRefMathSciNetGoogle Scholar
  12. 12.
    IBSR. The Internet Brain Segmentation Repository (IBSR), http://www.cma.mgh.harvard.edu/ibsr/
  13. 13.
    Yokota, F., Okada, T., Takao, M., Sugano, N., Tada, Y., Sato, Y.: Automated segmentation of the femur and pelvis from 3D CT data of diseased hip using hierarchical statistical shape model of joint structure. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C., et al. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 811–818. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Juan J. Cerrolaza
    • 1
  • Arantxa Villanueva
    • 2
  • Mauricio Reyes
    • 3
  • Rafael Cabeza
    • 2
  • Miguel Angel González Ballester
    • 4
  • Marius George Linguraru
    • 1
    • 5
  1. 1.Sheikh Zayed Institute for Pediatric Surgical InnovationChildren´s National Health SystemWashingtonUSA
  2. 2.Public University of NavarraPamplonaSpain
  3. 3.Surgical Technology and BiomechanicsUniversity of BernBernSwitzerland
  4. 4.ICREA, BarcelonaSpain – Universitat Pompeu FabraBarcelonaSpain
  5. 5.School of Medicine and Health SciencesGeorge Washington Univ.WashingtonUSA

Personalised recommendations