Advertisement

Sparse Appearance Learning Based Automatic Coronary Sinus Segmentation in CTA

  • Shiyang Lu
  • Xiaojie Huang
  • Zhiyong Wang
  • Yefeng Zheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8673)

Abstract

Interventional cardiologists are often challenged by a high degree of variability in the coronary venous anatomy during coronary sinus cannulation and left ventricular epicardial lead placement for cardiac resynchronization therapy (CRT), making it important to have a precise and fully-automatic segmentation solution for detecting the coronary sinus. A few approaches have been proposed for automatic segmentation of tubular structures utilizing various vesselness measurements. Although working well on contrasted coronary arteries, these methods fail in segmenting the coronary sinus that has almost no contrast in computed tomography angiography (CTA) data, making it difficult to distinguish from surrounding tissues. In this work we propose a multiscale sparse appearance learning based method for estimating vesselness towards automatically extracting the centerlines. Instead of modeling the subtle discrimination at the low-level intensity, we leverage the flexibility of sparse representation to model the inherent spatial coherence of vessel/background appearance and derive a vesselness measurement. After centerline extraction, the coronary sinus lumen is segmented using a learning based boundary detector and Markov random field (MRF) based optimal surface extraction. Quantitative evaluation on a large cardiac CTA dataset (consisting of 204 3D volumes) demonstrates the superior accuracy of the proposed method in both centerline extraction and lumen segmentation, compared to the state-of-the-art.

Keywords

Cardiac Resynchronization Therapy Coronary Sinus Markov Random Field Lumen Surface Vesselness Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abraham, W.T., Hayes, D.L.: Cardiac resynchronization therapy for heart failure. Circulation 108(21), 2596–2603 (2003)CrossRefGoogle Scholar
  2. 2.
    Ma, Y.L., Shetty, A.K., Duckett, S., Etyngier, P., Gijsbers, G., Bullens, R., Schaeffter, T., Razavi, R., Rinaldi, C.A., Rhode, K.S.: An integrated platform for image-guided cardiac resynchronization therapy. Physics in Medicine and Biology 57(10), 2953–2968 (2012)CrossRefGoogle Scholar
  3. 3.
    Garcia, M.P., Toumoulin, C., Haigron, P., Velut, J., Garreau, M., Boulmier, D.: Coronary vein tracking from MSCT using a minimum cost path approach. In: IEEE International Conference on Biomedical Imaging, pp. 17–20 (2010)Google Scholar
  4. 4.
    Ordas, S., Oubel, E., Leta, R., Carreras, F., Frangi, A.F.: A statistical shape model of the heart and its application to model-based segmentation. In: Proc. of SPIE Conf. Medical Imaging, vol. 6511 (2007)Google Scholar
  5. 5.
    Duckett, S.G., Ginks, M.R., Knowles, B.R., Ma, Y., Shetty, A., Bostock, J., Cooklin, M., Gill, J.S., Carr-White, G.S., Razavi, R., Schaeffter, T., Rhode, K.S., Rinaldi, C.A.: Advanced image fusion to overlay coronary sinus anatomy with real-time fluoroscopy to facilitate left ventricular lead implantation in CRT. Pacing and Clinical Electrophysiology 34(2), 226–234 (2011)CrossRefGoogle Scholar
  6. 6.
    Ecabert, O., Peters, J., Walker, M.J., Ivanc, T., Lorenz, C., von Berg, J., Lessick, J., Vembar, M., Weese, J.: Segmentation of the heart and great vessels in CT images using a model-based adaptation framework. Medical Image Analysis 15(6), 863–876 (2011)CrossRefGoogle Scholar
  7. 7.
    Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Medical Image Analysis 13(6), 819–845 (2009)CrossRefGoogle Scholar
  8. 8.
    Zheng, Y., Tek, H., Funka-Lea, G.: Robust and accurate coronary artery centerline extraction in CTA by combining model-driven and data-driven approaches. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 74–81. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Huang, X., Dione, D.P., Compas, C.B., Papademetris, X., Lin, B.A., Sinusas, A.J., Duncan, J.S.: A dynamical appearance model based on multiscale sparse representation: Segmentation of the left ventricle from 4D echocardiography. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 58–65. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Transactions on Medical Imaging 27(11), 1668–1681 (2008)CrossRefGoogle Scholar
  11. 11.
    Zheng, Y., Loziczonek, M., Georgescu, B., Zhou, S.K., Vega-Higuera, F., Comaniciu, D.: Machine learning based vesselness measurement for coronary artery segmentation in cardiac CT volumes. In: Proc. of SPIE Medical Imaging. vol. 7962, pp. 1–12 (2011)Google Scholar
  12. 12.
    Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing 54(11), 4311–4322 (2006)CrossRefGoogle Scholar
  13. 13.
    Ishikawa, H.: Exact optimization for Markov random fields with convex priors. IEEE Trans. Pattern Anal. Machine Intell. 25(10), 1333–1336 (2003)CrossRefGoogle Scholar
  14. 14.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Shiyang Lu
    • 1
    • 3
  • Xiaojie Huang
    • 2
    • 3
  • Zhiyong Wang
    • 1
  • Yefeng Zheng
    • 3
  1. 1.School of Information TechnologiesThe University of SydneySydneyAustralia
  2. 2.Department of Electrical EngineeringYale UniversityNew HavenUSA
  3. 3.Imaging and Computer VisionSiemens Corporation, Corporate TechnologyPrincetonUSA

Personalised recommendations