Combining Generative Models for Multifocal Glioma Segmentation and Registration

  • Dongjin Kwon
  • Russell T. Shinohara
  • Hamed Akbari
  • Christos Davatzikos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8673)


In this paper, we propose a new method for simultaneously segmenting brain scans of glioma patients and registering these scans to a normal atlas. Performing joint segmentation and registration for brain tumors is very challenging when tumors include multifocal masses and have complex shapes with heterogeneous textures. Our approach grows tumors for each mass from multiple seed points using a tumor growth model and modifies a normal atlas into one with tumors and edema using the combined results of grown tumors. We also generate a tumor shape prior via the random walk with restart, utilizing multiple tumor seeds as initial foreground information. We then incorporate this shape prior into an EM framework which estimates the mapping between the modified atlas and the scans, posteriors for each tissue labels, and the tumor growth model parameters. We apply our method to the BRATS 2013 leaderboard dataset to evaluate segmentation performance. Our method shows the best performance among all participants.


Spatial Probability Tumor Seed Tumor Shape Random Walk With Restart Tumor Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Giannopoulos, S., Kyritsis, A.P.: Diagnosis and Management of Multifocal Gliomas. Oncology 79(3-4), 306–312 (2010)CrossRefGoogle Scholar
  2. 2.
    Gooya, A., Pohl, K.M., Billelo, M., Cirillo, L., Biros, G., Melhem, E.R., Davatzikos, C.: GLISTR: Glioma Image Segmentation and Registration. IEEE Trans. Med. Imaging 31(10), 1941–1954 (2012)CrossRefGoogle Scholar
  3. 3.
    Hogea, C., Davatzikos, C., Biros, G.: An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects. J. Math. Biol. 56(6), 793–825 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Hough, P.D., Kolda, T.G., Torczon, V.J.: Asynchronous Parallel Pattern Search for Nonlinear Optimization. SIAM J. Sci. Comput. 23(1), 134–156 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Kim, T.-H., Lee, K.M., Lee, S.U.: Generative Image Segmentation Using Random Walks with Restart. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 264–275. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Kwon, D., Niethammer, M., Akbari, H., Bilello, M., Davatzikos, C., Pohl, K.M.: PORTR: Pre-Operative and Post-Recurrence Brain Tumor Registration. IEEE Trans. Med. Imaging 33(3), 651–667 (2014)CrossRefGoogle Scholar
  7. 7.
    Leemput, K.V., Maes, F., Vandermeulen, D., Suetens, P.: Automated Model-Based Bias Field Correction of MR Images of the Brain. IEEE Trans. Med. Imaging 18(10), 885–896 (1999)CrossRefGoogle Scholar
  8. 8.
    Louis, D.N.: Molecular Pathology of Malignant Gliomas. Annu. Rev. Pathol. Mech. Dis. 1, 97–117 (2006)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Menze, B.H., et al.: The BRATS Online Tools - Multimodal Brain Tumor Segmentation, BRATS (2013),
  10. 10.
    Menze, B.H., et al.: The Multimodal Brain Tumor Image Segmentation Benchmark, BRATS (2014),
  11. 11.
    Morris, C.N.: Parametric Empirical Bayes Inference: Theory and Applications. J. Am. Statist. Assoc. 78(381), 47–55 (1983)CrossRefzbMATHGoogle Scholar
  12. 12.
    Parisot, S., Wells, W., Chemouny, S., Duffau, H., Paragios, N.: Concurrent tumor segmentation and registration with uncertainty-based sparse non-uniform graphs. Med. Image Anal. 18(4), 647–659 (2014)CrossRefGoogle Scholar
  13. 13.
    Pohl, K.M., Fisher, J., Grimson, W.E.L., Kikinis, R., Wells, W.M.: A Bayesian model for joint segmentation and registration. NeuroImage 31(1), 228–239 (2006)CrossRefGoogle Scholar
  14. 14.
    Sanai, N., Berger, M.S.: Glioma Extent of Resection and Its Impact on Patient Outcome. Neurosurgery 62(4), 753–766 (2008)CrossRefGoogle Scholar
  15. 15.
    Verma, R., Zacharaki, E.I., Ou, Y., Cai, H., Chawla, S., Lee, S.K., Melhem, E.R., Wolf, R., Davatzikos, C.: Multiparametric Tissue Characterization of Brain Neoplasms and Their Recurrence Using Pattern Classification of MR Images. Acad. Radiol. 15(8), 966–977 (2008)CrossRefGoogle Scholar
  16. 16.
    Zikic, D., Glocker, B., Konukoglu, E., Criminisi, A., Demiralp, C., Shotton, J., Thomas, O.M., Das, T., Jena, R., Price, S.J.: Decision Forests for Tissue-Specific Segmentation of High-Grade Gliomas in Multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dongjin Kwon
    • 1
  • Russell T. Shinohara
    • 2
    • 1
  • Hamed Akbari
    • 1
  • Christos Davatzikos
    • 1
  1. 1.Center for Biomedical Image Computing and AnalyticsUniversity of PennsylvaniaUSA
  2. 2.Department of Biostatistics and EpidemiologyUniversity of PennsylvaniaUSA

Personalised recommendations