Topo-Geometric Filtration Scheme for Geometric Active Contours and Level Sets: Application to Cerebrovascular Segmentation

  • Helena Molina-Abril
  • Alejandro F. Frangi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8673)


One of the main problems of the existing methods for the segmentation of cerebral vasculature is the appearance in the segmentation result of wrong topological artefacts such as the kissing vessels. In this paper, a new approach for the detection and correction of such errors is presented. The proposed technique combines robust topological information given by Persistent Homology with complementary geometrical information of the vascular tree. The method was evaluated on 20 images depicting cerebral arteries. Detection and correction success rates were 81.80% and 68.77%, respectively.


Simplicial Complex Segmentation Result Homology Group Homology Class Vascular Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aneurist project,
  2. 2.
    Antiga, L.: Patient-Specific Modeling of Geometry and Blood Flow in Large Arteries. Ph.D. thesis, Politecnico di Milano (2002)Google Scholar
  3. 3.
    Bendich, P., Edelsbrunner, H., Kerber, M.: Computing robustness and persistence for images. IEEE Trans. on Vis. and Comp. Graphics 16(6), 1251–1260 (2010)CrossRefGoogle Scholar
  4. 4.
    Bogunović, H., Pozo, J.M., Villa-Uriol, M.C., Majoie, C.B.L.M., van den Berg, R., Gratama van Andel, H.A.F., Macho, J.M., Blasco, J., San Román, L., Frangi, A.F.: Automated segmentation of cerebral vasculature with aneurysms in 3DRA and TOF-MRA using geodesic active regions. Med. Phys. 38(1), 210–222 (2011)CrossRefGoogle Scholar
  5. 5.
    Caselles, V.: Geometric models for active contours. In: International Conference on Image Processing. vol. 3, pp. 9–12. IEEE (1995)Google Scholar
  6. 6.
    Chen, C., Freedman, D.: Topology noise removal for curve and surface evolution. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds.) MICCAI 2010. LNCS, vol. 6533, pp. 31–42. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Edelsbrunner, H., Harer, J.: Computational Topology. Amer. Math. Soc. (2010)Google Scholar
  8. 8.
    Friman, O., Hindennach, M., Kühnel, C., Peitgen, H.O.: Multiple hypothesis template tracking of 3D vessel structures. Med. Imag. Anal. 14(2), 160–171 (2010)CrossRefGoogle Scholar
  9. 9.
    Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques. Med. Imag. Anal. 13(6), 819–845 (2009)CrossRefGoogle Scholar
  10. 10.
    Ségonne, F.: Active contours under topology control genus preserving level sets. International Journal of Computer Vision 79(2), 107–117 (2008)CrossRefGoogle Scholar
  11. 11.
    Wong, W.C.K., Chung, A.C.S.: Probabilistic vessel axis tracing and its application to vessel segmentation with stream surfaces and minimum cost paths. Med. Imag. Anal. 11(6), 567–587 (2007)CrossRefGoogle Scholar
  12. 12.
    Xu, C., Pham, D.L., Prince, J.L.: Image segmentation using deformable models. In: Handbook of Medical Imaging. Medical Image Processing and Analysis, vol. 2, pp. 175–272 (2000)Google Scholar
  13. 13.
    Yureidini, A., Kerrien, E., Cotin, S.: Robust RANSAC-based blood vessel segmentation. In: SPIE Medical Imaging, vol. 8314, p. 8314M. SPIE Press (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Helena Molina-Abril
    • 1
  • Alejandro F. Frangi
    • 1
  1. 1.Centre for Computational Imaging and Simulation Technologies in Biomedicine, Mechanical Engineering DepartmentUniversity of SheffieldUK

Personalised recommendations