Advertisement

Patient-Specific Semi-supervised Learning for Postoperative Brain Tumor Segmentation

  • Raphael Meier
  • Stefan Bauer
  • Johannes Slotboom
  • Roland Wiest
  • Mauricio Reyes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8673)

Abstract

In contrast to preoperative brain tumor segmentation, the problem of postoperative brain tumor segmentation has been rarely approached so far. We present a fully-automatic segmentation method using multimodal magnetic resonance image data and patient-specific semi-supervised learning. The idea behind our semi-supervised approach is to effectively fuse information from both pre- and postoperative image data of the same patient to improve segmentation of the postoperative image. We pose image segmentation as a classification problem and solve it by adopting a semi-supervised decision forest. The method is evaluated on a cohort of 10 high-grade glioma patients, with segmentation performance and computation time comparable or superior to a state-of-the-art brain tumor segmentation method. Moreover, our results confirm that the inclusion of preoperative MR images lead to a better performance regarding postoperative brain tumor segmentation.

Keywords

Postoperative Image Residual Tumor Volume Decision Forest Brain Tumor Image Leaf Statistic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Zinn, P.O., Colen, R.R.: Imaging genomic mapping in glioblastoma. Neurosurgery 60, 126–130 (2013)CrossRefGoogle Scholar
  2. 2.
    Sanai, N., Polley, M.Y., McDermott, M.W., et al.: An extent of resection threshold for newly diagnosed glioblastomas. J. Neurosurg. 115(1), 3–8 (2011)CrossRefGoogle Scholar
  3. 3.
    Kubben, P.L., Postma, A.A., Kessels, A.G.H., van Overbeeke, J.J., van Santbrink, H.: Intraobserver and interobserver agreement in volumetric assessment of glioblastoma multiforme resection. Neurosurgery 67(5), 1329–1334 (2010)CrossRefGoogle Scholar
  4. 4.
    Newton, H.: Handbook of Brain Tumor Chemotherapy. Academic Press (2006)Google Scholar
  5. 5.
    B. Menze, et al.: The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) (submitted, 2014)Google Scholar
  6. 6.
    Bauer, S., Wiest, R., Nolte, L.P., Reyes, M.: A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58(13), 97–129 (2013)CrossRefGoogle Scholar
  7. 7.
    Moonis, G., Liu, J., et al.: Estimation of tumor volume with fuzzy-connectedness segmentation of MR images. AJNR 23(3), 356–363 (2002)Google Scholar
  8. 8.
    Kanaly, C.W., Ding, D., Mehta, A.I., Waller, A.F., Crocker, I., Desjardins, A., Reardon, D.A., Friedman, A.H., et al.: A novel method for volumetric MRI response assessment of enhancing brain tumors. PLoS One 6(1) (2011)Google Scholar
  9. 9.
    Kwon, D., Niethammer, M., Akbari, H., Bilello, M., Davatzikos, C., Pohl, K.: PORTR: Pre-Operative and Post-Recurrence Brain Tumor Registration. IEEE TMI 33(3), 651–667 (2014)Google Scholar
  10. 10.
    Lee, C.H., Wang, S., et al.: Learning to Model Spatial Dependency: Semi-Supervised Discriminative Random Fields. In: Schölkopf, B., Platt, J., Hofmann, T. (eds.) NIPS 2006, vol. 19, pp. 793–800. MIT Press, Cambridge (2006)Google Scholar
  11. 11.
    Caban, J.J., Lee, N., Ebadollahi, S., Laine, A.F., Kender, J.R.: Concept Detection in Longitudinal Brain MR Images Using Multi-Modal Cues. In: IEEE ISBI, pp. 418–421. IEEE Press, New York (2009)Google Scholar
  12. 12.
    Bauer, S., Fejes, T., Slotboom, J., Wiest, R., Nolte, L.P., Reyes, M.: Segmentation of Brain Tumor Images Based on Integrated Hierarchical Classification and Regularization. In: Proceedings of MICCAI-BRATS 2012, pp. 10–13 (2012)Google Scholar
  13. 13.
    Criminisi, A., Shotton, J.: Decision Forests for Computer Vision and Medical Image Analysis. Springer, London (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Raphael Meier
    • 1
  • Stefan Bauer
    • 1
    • 2
  • Johannes Slotboom
    • 2
  • Roland Wiest
    • 2
  • Mauricio Reyes
    • 1
  1. 1.Institute for Surgical Technologies and BiomechanicsUniversity of BernSwitzerland
  2. 2.InselspitalBern University HospitalSwitzerland

Personalised recommendations