Automated Detection of New or Evolving Melanocytic Lesions Using a 3D Body Model

  • Federica Bogo
  • Javier Romero
  • Enoch Peserico
  • Michael J. Black
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8673)


Detection of new or rapidly evolving melanocytic lesions is crucial for early diagnosis and treatment of melanoma. We propose a fully automated pre-screening system for detecting new lesions or changes in existing ones, on the order of 2 − 3mm, over almost the entire body surface. Our solution is based on a multi-camera 3D stereo system. The system captures 3D textured scans of a subject at different times and then brings these scans into correspondence by aligning them with a learned, parametric, non-rigid 3D body model. This means that captured skin textures are in accurate alignment across scans, facilitating the detection of new or changing lesions. The integration of lesion segmentation with a deformable 3D body model is a key contribution that makes our approach robust to changes in illumination and subject pose.


  1. 1.
    Bogo, F., Romero, J., Loper, M., Black, M.J.: FAUST: Dataset and evaluation for 3D mesh registration. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2014)Google Scholar
  2. 2.
    Dunki-Jacobs, E., Callender, G., McMasters, K.: Current management of melanoma. Current Problems in Surgery 50, 351–382 (2013)CrossRefGoogle Scholar
  3. 3.
    Huang, H., Bergstresser, P.: A new hybrid technique for dermatological image registration. In: IEEE International Conference on BioInformatics and BioEngineering (BIBE), pp. 1163–1167 (2007)Google Scholar
  4. 4.
    Korotkov, K., Garcia, R.: Computerized analysis of pigmented skin lesions: A review. Artificial Intelligence in Medicine 56(2), 69–90 (2012)CrossRefGoogle Scholar
  5. 5.
    Mirzaalian, H., Hamarneh, G., Lee, T.: A graph-based approach to skin mole matching incorporating template-normalized coordinates. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2152–2159 (2009)Google Scholar
  6. 6.
    Mirzaalian, H., Lee, T., Hamarneh, G.: Uncertainty-based feature learning for skin lesion matching using a high order MRF optimization framework. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 98–105. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Perednia, D., White, R., Schowengerdt, R.: Automated feature detection in digital images of skin. Computer Methods and Programs in Biomedicine 34, 41–60 (1991)CrossRefGoogle Scholar
  8. 8.
    Perednia, D., White, R., Schowengerdt, R.: Automatic registration of multiple skin lesions by use of point pattern matching. Computerized Medical Imaging and Graphics 16, 205–216 (1991)CrossRefGoogle Scholar
  9. 9.
    Pierrard, J., Vetter, T.: Skin detail analysis for face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2007)Google Scholar
  10. 10.
    Taeg, S., Freeman, W., Tsao, H.: A reliable skin mole localization scheme. In: IEEE International Conference on Computer Vision (ICCV), pp. 1–8 (2007)Google Scholar
  11. 11.
    Voigt, H., Classen, R.: Topodermatographic image analysis for melanoma screening and the quantitative assessment of tumor dimension parameters of the skin. Cancer 75, 981–988 (1995)CrossRefGoogle Scholar
  12. 12.
    Weiss, A., Hirshberg, D., Black, M.J.: Home 3D body scans from noisy image and range data. In: IEEE International Conference on Computer Vision (ICCV), pp. 1951–1958 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Federica Bogo
    • 1
    • 2
  • Javier Romero
    • 1
  • Enoch Peserico
    • 2
  • Michael J. Black
    • 1
  1. 1.Max Planck Institute for Intelligent SystemsTübingenGermany
  2. 2.Università degli Studi di PadovaPadovaItaly

Personalised recommendations