Advertisement

Patient Specific Image Driven Evaluation of the Aggressiveness of Metastases to the Lung

  • Thierry Colin
  • François Cornelis
  • Julien Jouganous
  • Marie Martin
  • Olivier Saut
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8673)

Abstract

Metastases to the lung are a therapeutic challenge because some are fast-evolving while others evolve slowly. Any insight that can be provided for which nodule has to be treated first would help clinicians. In this work, we evaluate the aggressiveness but also the response to treatment of these nodules using a calibrated mathematical model. This model is a macroscopic model describing tumoral growth through a set of nonlinear partial differential equations. It has to be calibrated to a specific patient and a specific nodule using a temporal sequence of CT scans. To this end, a new optimization technique based on a reduced order method is developed. Finally, results on two clinical cases are presented that give satisfactory numerical prognosis of the evolution of a nodule during different phases: growth, treatment and post-treatment relapse.

Keywords

Tumor growth modeling Medical imaging Partial Differential Equations Clinical data assimilation 

References

  1. 1.
    Clatz, O., Sermesant, M., Bondiau, P.-Y., Delingette, H., Warfield, S.K., Malandain, G., Ayache, N.: Realistic simulation of the 3-d growth of brain tumors in mr images coupling diffusion with biomechanical deformation. IEEE Transactions on Medical Imaging 24(10), 1334–1346 (2005)CrossRefGoogle Scholar
  2. 2.
    Hogea, C., Davatzikos, C., Biros, G.: An image-driven parameter estimation problem for a reaction–diffusion glioma growth model with mass effects. J. Math. Biol. 56(6), 793–825 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Simeoni, M., Magni, P., Cammia, C., Nicolao, G.D., Croci, V., Pesenti, E., Germani, M., Poggesi, I., Rocchetti, M.: Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res 64(3), 1094–1101 (2004)CrossRefGoogle Scholar
  4. 4.
    Swanson, K.R., Alvord, E.C., Murray, J.D.: Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Br. J. Cancer 86(1), 14–18 (2002)CrossRefGoogle Scholar
  5. 5.
    Colin, T., Iollo, A., Lombardi, D., Saut, O.: System identification in tumor growth modeling using semi-empirical eigenfunctions. Mathematical Models and Methods in Applied Sciences (2012)Google Scholar
  6. 6.
    Carmeliet, P., Jain, R.: Angiogenesis in cancer and other diseases. Nature (2000)Google Scholar
  7. 7.
    Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math, 117–148 (2001)Google Scholar
  8. 8.
    Ambrosi, D., Preziosi, L.: On the closure of mass balance models for tumor growth. Math. Mod. Meth. Appl. Sci 12(5), 737–754 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Liu, Y., Sadowski, S.M., Weisbrod, A.B., Kebebew, E., Summers, R.M., Yao, J.: Patient Specific Tumor Growth Prediction Using Multimodal Images. Medical Image Analysis (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thierry Colin
    • 1
  • François Cornelis
    • 1
    • 2
  • Julien Jouganous
    • 1
  • Marie Martin
    • 1
  • Olivier Saut
    • 1
  1. 1.Institut de Mathématiques de BordeauxUniversité de BordeauxFrance
  2. 2.Hôpital PellegrinCHU BordeauxFrance

Personalised recommendations